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Abstract

■ Much of what we need to remember consists of sequences
of stimuli, experiences, or events. Repeated presentation of a
specific sequence establishes a more stable long-term memory,
as shown by increased recall accuracy over successive trials of an
STM task. Here we used fMRI to study the neural mechanisms
that underlie sequence learning in the auditory–verbal domain.
Specifically, we track the emergence of neural representations of
sequences over the course of learning using multivariate pattern
analysis. For this purpose, we use a serial recall task, in which
participants have to recall overlapping sequences of letter names,

with some of those sequences being repeated and hence learned
over the course of the experiment. We show that voxels in the
hippocampus come to encode the identity of specific repeated
sequences although the letter names were common to all se-
quences in the experiment. These changes could have not been
caused by changes in overall level of activity or to fMRI signal-to-
noise ratios. Hence, the present results go beyond conventional
univariate fMRI methods in showing a critical contribution of
medial-temporal lobe memory systems to establishing long-term
representations of verbal sequences. ■

INTRODUCTION

There is little value in remembering the digits in a phone
number unless you can also remember the order they
appeared in. Although a short sequence of, say, six words
or digits might be accurately recalled immediately after a
single presentation, it is likely to be forgotten very quickly
(Brown, 1958). Repeated presentations enable more stable
memory representations to be established and allow longer
sequences to be learned. That is, information temporarily
stored in STM can be transferred to long-term memory via
repetitions. What are the neural mechanisms that underlie
this process of repetition learning of sequences?
Existing neurophysiological and imaging data suggests

that both medial-temporal/hippocampal (MTL/HC)- and
BG-based memory systems support learning of sequences
with a wide range of different stimuli. Previous studies with
rodents and humans have shown that the hippocampus
is selectively involved in encoding sequences of odors
(Devito & Eichenbaum, 2011; Agster, Fortin, & Eichenbaum,
2002), faces (Ross, Brown, & Stern, 2009; Kumaran &
Maguire, 2006), movements (Albouy et al., 2008), and loca-
tions (Schendan, Searl, Melrose, & Stern, 2003). Addition-
ally, BG activation has been shown to be correlated with
learning sequences of motor movements and spatial loca-
tions (Graybiel, 2008; Yin & Knowlton, 2006; Poldrack
et al., 2005; White & McDonald, 2002; Miyachi, Hikosaka,
Miyashita, Kárádi, & Rand, 1997).

However, previous neuroimaging studies have so far
almost exclusively used univariate fMRI subtractions and
have therefore only been able to monitor how these brain
areas become more or less active as a function of learning.
Hence, many of these studies have attempted to identify
neural correlates of sequence learning on the basis of
correlations between behavioral learning measures and
BOLD amplitude (e.g., Ross et al., 2009; Turk-Browne,
Scholl, Chun, & Johnson, 2009; Seger & Cincotta, 2006;
Lieberman, Chang, Chiao, Bookheimer, & Knowlton,
2004; Schendan et al., 2003). However, even if activation
in a given brain area correlates strongly with somemeasure
of learning, this is no guarantee that this area is actually in-
volved in storing or representing the learned information.
In the current experiment, our goal was to track the evo-
lution of the neural representations of sequence informa-
tion over the course of learning using multivariate pattern
analysis (MVPA; for reviews, see Kriegeskorte, Goebel, &
Bandettini, 2006; Norman, Polyn, Detre, & Haxby, 2006).

We used an immediate serial recall task, where partici-
pants have to verbally recall sequences of letter names,
with some of those sequences being repeated over the
course of the experiment (Figure 1A, B). This task, often
referred to as the Hebb (1961) repetition learning task, is
commonly seen as a laboratory analogue of sequence
learning in a natural environment (e.g., learning sequences
of speech sounds that comprise new words; for a review,
see Page & Norris, 2009). To ensure that our task was sen-
sitive only to learning order information and not to learning
about the individual items being used in the experiment,
all sequences were permutations of the same set of eight
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spoken letter names. The critical sequences were each re-
peated 12 times over the course of the experiment and
were interspersed with filler sequences that were all unique.
In common with most multivariate analysis methods, the
voxel responses within a given brain area were treated as
a pattern of activations (Figure 1C), each corresponding
to a single presentation of a repeating sequence. We were
then able to track the way that the information contained in
these vectors changed over time as a function of learning.
We used this procedure to answer two simple questions:
First, do any brain regions develop representations that
are tuned to repeating sequences, and second, are these
representations sequence-specific?

We addressed the first question by calculating the
changes in the pairwise correlations between the patterns
elicited by successive presentations of each repeated se-
quence from the second to the twelfth repetition (Figure 1D,
blue cells). In any brain region that comes to learn a stable
representation of a repeated sequence, the correlation
between the activation patterns elicited by successive
presentations of that sequence should increase over the
course of the experiment. However, it could be the case
that the representations that develop are the same for all
sequences. That is, what might be learned is a generic
representation of sequences in the experiment. To show
evidence of sequence-specific representations, we

Figure 1. (A) Structure of trials. (B) Single trial. (C–E) Multivariate pattern similarity analysis. (C) and (D) indicate the set of pairwise correlations
between sequences that enter into the analysis. (D) and (E) show how those correlations are then combined to derive measures of the changes
in within- and between-sequence similarity over repetitions. (C) Voxel responses within a given brain area are treated as a vector of activations. Each
vector corresponds to a single presentation of a repeating sequence. (D) An example of a pairwise activity correlation matrix for six sequences
(labeled A–F), each repeated 3 times. The letters represent different sequences and the numbers indicate repetitions of those sequences the nth
repetition. Red cells are used to calculate the pairwise correlations between the activity patterns corresponding to the first presentation of each
sequence; orange cells for second presentations, and yellow cells for the third presentations. Blue cells are used to calculate the correlation of the
activity patterns between successive presentations of the same sequence (the nth presentation of a sequence to presentation n − 1). (E) The means
of the resulting between-sequence and between-repetition correlation are then used to calculate two respective slopes over repetitions.
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additionally need to show that similarity between the pat-
terns elicited by different sequences does not increase over
repetitions. Note that decreasing similarity between differ-
ent sequences is also not sufficient on its own, because this
could also arise if the responses to all sequences are initially
the same, but become noisier over repetitions.
Given that the average regional BOLD response has

been frequently shown to decrease over repetitions of audi-
tory stimuli (Orfanidou, Marslen-Wilson, & Davis, 2006;
Bergerbest, Ghahremani, & Gabrieli, 2004), we have to
be sure that changes in similarity are not simply a conse-
quence of an increase in physiological or measurement
(fMRI) noise. Only by observing the combination of the
two effects—an increase in similarity between repetitions
of the same sequence and no increase in similarity between
different sequences—can we conclude that a region is
learning distinct representations of individual sequences.
Such outcome could not be explained as arising from an
overall change in the magnitude of the BOLD response,
nor a change in the proportion of noise in the neural signal
in a particular region, because an increase in noise over
repetitions would affect both of the slopes.
By combining the two pattern information measures

with a “searchlight” approach (Kriegeskorte et al., 2006;
see Methods), we were able to identify brain areas that
were both sensitive to learning of individual sequences
and where distinctive representations emerged as a func-
tion of learning. We also performed a conventional whole-
brain univariate analysis to ensure that we could replicate
previous fMRI studies of sequence learning.

METHODS

Participants

In total, 29 right-handed volunteers (19 women, 20–
33 years old) gave informed, written consent for partici-
pation in the study after its nature had been explained to
them. Participants reported no history of psychiatric or
neurological disorders and no current use of any psycho-
active medications. Seven participants were later excluded
from the study because of the excessive motion artifacts
in the collected fMRI data (see “fMRI data acquisition
and pre-processing” for the exclusion criteria). The study
was approved by the Cambridge Local Research Ethics
Committee (Cambridge, UK).

Task and Behavioral Measures

In the current study, we used the Hebb (1961) repetition
task. Participants performed immediate serial recall of
auditorily presented sequences. Recall was always spoken.
These conditions are the most informative for studying
repetition learning of sequences for several reasons.
First, the Hebb repetition task has been studied exten-

sively in the behavioral literature. Typically, participantsʼ
performance on the immediate serial recall of a sequence

of items is seen to improve over unannounced repetitions
of a given sequence (Fendrich, Healy, & Bourne, 1991;
Cunningham, Healy, & Williams, 1984; Schwartz & Bryden,
1971; Hebb, 1961; see Page & Norris, 2009, for a review).
Thus, Hebb repetition learning is a paradigmatic example of
the transfer of information from short to long-term mem-
ory and a laboratory analogue of auditory–motor learning
for linguistic, musical, or numerical sequences.

Second, considerable research has shown that the mo-
dality of presentation strongly influences the manner in
which people perceive, learn, and represent information
in STM; a number of studies suggest an advantage in the
processing of sequential auditory input (see Conway &
Christiansen, 2006, for a short review). Many behavioral
effects of sequential processing are less pronounced or ab-
sent when visual stimuli are used (Conway & Christiansen,
2006; Frankish, 1985, 1989; Crowder, 1986; Wright, Santiago,
Sands, Kendrick, & Cook, 1985). Third, the combination of
auditory presentation with spoken responses employs
processes commonly used in acquiring new phonological
sequences in word learning (Page & Norris, 2009). Fourth,
previous research has shown that response learning is a
part of the repetition learning paradigm (Oberauer &
Meyer, 2009; Couture, Lafond, & Tremblay, 2008; Page,
Cumming, Norris, Hitch, & McNeil, 2006). However, exist-
ing functional imaging data on repetition learning of
sequences has been gathered almost exclusively using
manual rather than verbal responses (see Kalm, 2010, for
a short review).

In our task, participants had to recall sequences of eight
auditorily presented monosyllabic letters in the correct
order. All sequences consisted of random reorderings of
the same eight letters (Q, J, Z, D, L, S, H, N). Sequences
therefore differed only in terms of the order in which the
letters were presented. Sequences were constructed sub-
ject to the following constraints: there was no positional
overlap between consecutive sequences; all sequences
were controlled to exclude rhyming letters and semantic
chunks. Sequences were either repeated over the course of
the experiment (repeated sequences, repeated 12 times)
or not (unique sequences, presented once). No repeated
sequences shared more than two items in the same po-
sition. Hence, the primary experimental manipulation
was the number of repetitions between current and first
presentation. All sequences were presented in blocked
triplets, where the first trial was always a unique filler se-
quence and the last two trials were repeating sequences
(Figure 1A). As a result, a single repeating sequence was
repeated at every third trial.

A new repeating sequence was introduced after the
previous sequence had been repeated 6 times. The first
repeating sequence was presented 6 times during a train-
ing session before the fMRI experiment to ensure that it
had also been presented 6 times at the start of the experi-
ment. Thus, at any given point in the experiment two re-
peating sequences were presented simultaneously, with
one of the repeating sequences being presented fewer
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than six times and the other more than six times. This en-
sured that comparisons between sequences at different
stages of learning were not confounded with time.

On each trial, participants were presented with a visual
fixation cross to indicate the start of the auditory presen-
tation of the sequence. Eight letters were then presented
(in a male voice, 500 msec SOA) followed by a cue “?”
indicating that they were to verbally recall the sequence
exactly as they had just heard it; or a cue “–” indicating
not to respond and to wait for 2–10 sec for the next trial
(Figure 1B). The letters were spoken by a native English-
speaking man and recorded at 44.1 kHz sampling rate
and 16 bits per sample. Recordings were made in a sound-
proof room and the perceptual center of the syllable syn-
chronized to a common onset time such that sequences
were heard as rhythmic (Morton, Marcus, & Frankish,
1976). This enabled us to control for the time difference
in pronouncing different letters.

In summary, each participant was presented with 216 trials,
with 54 trials presented in four scanning runs, in addition to
an initial practice session outside the scanner. Participants
were not informed that there were different types of trials.
Participants only had to recall the sequences on two thirds
of the trials to allow the effects of encoding and retrieval to
be modeled separately in the imaging analysis. Recall and
no-recall trials were pseudorandomly mixed during each
scanning run.

For each trial, recall performance was measured as the
Levenshtein distance (Levenshtein, 1966) between the pre-
sented sequence and theparticipantʼs recall. The Levenshtein
distance is the smallest number of edit operations (inser-
tion, deletion, or substitution of a single character) that
are necessary to modify one string to obtain another string.
For a sequence of length n, the Levenshtein distance
ranges from 0, when the two sequences are identical, to
n, when the two sequences are completely different. For
each trial, we calculated a normalized Levenshtein distance
score according to the following formula:

LD ¼ 1−
LevdistðP;RÞ

N

where P is the sequence presented, R is the recall, and N is
number of letters in presented sequence. The resulting nor-
malized Levenshtein distance score (henceforth LD) ranges
between 0 and 1, where a score of 1 indicates that all items
were recalled in their original serial positions. This method
is preferred over counting responses as being correct only
when the items are recalled in the same serial position as
the original sequence. The Levenshtein procedure gives
credit for partially correct responses where, for example,
participants omit a single item early on in the sequence.

fMRI Data Acquisition and Preprocessing

Participants were scanned at the Medical Research Council
Cognition and Brain Sciences Unit (Cambridge, UK) on a

3-T Siemens TIM Trio MRI scanner using a 12-channel head
coil. Functional images were collected using 32 slices cov-
ering the whole brain (slice thickness = 3 mm, 25% slice
gap, in-plane resolution = 3 × 3 mm) with an EPI se-
quence (repetition time = 2 sec, echo time = 30 msec, flip
angle = 78°). In addition, high-resolution MPRAGE struc-
tural images were acquired at 1-mm isotropic resolution. (see
imaging.mrc-cbu.cam.ac.uk/imaging/ImagingSequences,
for detailed information.) Each participant performed four
scanning runs, 364 scans were acquired per run, including
16 dummy scans. Stimulus presentation was controlled by
DMDX software Version 3 (Forster & Forster, 2003). Visual
cues for sequence presentation and recall were rear pro-
jected onto a translucent screen outside the bore of the
magnet and viewed via amirror system attached to the head
coil. Auditory stimuli were deliveredwithmagnet-safe head-
phones installed inside ear defenders (NordicNeuroLab,
Bergen, Norway, noise attenuation of +30 dB).
All fMRI data were preprocessed and analyzed using

SPM5 software (Wellcome Trust Centre for Neuroimaging,
London) and custom in-house software. Before analysis, all
images were corrected for slice timing, with themiddle slice
in each scan used as a reference. Images were realigned
with respect to the first image using trilinear interpolation,
creating a mean realigned image. The mean realigned
image was then coregistered with the structural image,
and the structural image was normalized to the Montreal
Neurological Institute (MNI) average brain using the com-
bined segmentation/normalization procedure in SPM5.
We excluded seven participants from the analysis whose

head movement due to speaking in the scanner repeatedly
exceeded the following criteria: a translation threshold of
3 mm, rotation threshold of 4°, and between-image differ-
ence threshold of 0.1 calculated by dividing the summed
squared difference of consecutive images by the squared
global mean.

Multivoxel Pattern Analysis

As noted above, information about representations of
individual sequences can be detected in activity patterns
by combining two statistical measures: first, the correla-
tion between the activity patterns elicited by successive
presentations of a single sequence, which should in-
crease as sequence-specific responses develop (blue cells
in Figure 1D); second, the correlation between patterns
elicited by different sequences, which should decrease as
different sequences become more distinctive (red/yellow
cells in Figure 1D).
In this analysis, we moved a spherical searchlight

(Kriegeskorte et al., 2006) with a 6-mm radius through-
out the gray matter masked and unsmoothed volumes to
select, at each location, a local contiguous set of 186 voxels
(3 mm isotropic). In each sphere we estimated β values for
the encoding phase of every trial (216 βs) for every voxel in
the sphere (data from recall period was too noisy due to
movement artifacts generated by participants speaking in
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the scanner). The event regressors were convolved with
the canonical hemodynamic response (as defined by SPM
analysis package) and passed through a high-pass filter
(128 sec) to remove low-frequency noise. In addition to
six motion parameters (corresponding to translations and
rotations of the image due to movement in the scanner)
additional scan-specific regressors were also added to ac-
count for large head movements. Additional parameters
were modeled to account for extreme interscan move-
ments, which exceeded a translation threshold of 0.5 mm,
rotation threshold of 1.33°, and between-image difference
threshold of 0.035 calculated by dividing the summed
squared difference of consecutive images by the squared
global mean. These separate movement spike regressors
remove variance due to head movement caused by partici-
pants speaking in the scanner during the response phase
of the trials.
As a result, we obtained 216 β values for every voxel

representing the 216 sequence encoding events over
the course of the experiment. A sufficient degree of
decorrelation between all of the regressors was ensured
by (1) jittering the length of the rest phase (between 2
and 10 sec), (2) varying the length of the recall period
(7 sec), and (3) omitting the recall phase for one third
of the trials. Two thirds of the β values (144) represented
the 12 repetitions of 12 individual sequences, whereas
the remaining third represented 72 individual nonrepeat-
ing sequences. As a result, the voxels in the searchlight
comprised a vector of activations resulting in one vector
per trial.
For every searchlight, we computed a Spearman rank

correlation between the activity patterns elicited by suc-
cessive presentations of individual sequences (between-
repetition correlation, blue cells in Figure 1D). This was
done by correlating the first presentation of sequence A
to the second presentation of A, the second presentation
to the third presentation, and so forth, for all 12 repeating
sequences (blue cells in Figure 1D). As a result, we obtained
between-repetition similarity measures from the second to
the twelfth repetition for all repeating sequences. Next, we
calculated a change in between-repetition similarity by fit-
ting a slope over similarity measures using least-squares lin-
ear regression. Similarly, we computed a Spearman rank
correlation between the activity vectors of all the repeating
sequences presented during the first repetition, second rep-
etition, and so forth, to acquire the change in between-
sequence correlation (red–orange–yellow cells in Figure 1D).
Finally, we computed a statistic measuring the change in
the amount of information about the individual sequences
over the experiment. An increase in sequence identity in-
formation for a given searchlight was evaluated as a signifi-
cant interaction between two correlation slopes (between
sequences and within-sequence correlation, Figure 1E).
The between-sequence pattern similarity change and the
interaction coefficient were only calculated for voxels that
showed significant between-repetitions pattern similarity
increase.

For every participant, the searchlight analysis resulted
in a between-repetition pattern change brain map. We as-
signed a score of zero to any sphere in which fewer than
33 voxels were inside the individual gray matter volume.
These individual images were subsequently normalized
for MNI anatomical template and entered into random-
effects analyses (one-sample t tests). Voxels from the
random-effects analysis are reported that passed a whole-
brain false detection rate (FDR; Genovese, Lazar, & Nichols,
2002) threshold of p < .05.

Univariate Analysis

After preprocessing, the functional images underwent
spatial smoothing with a 6-mm FWHM Gaussian kernel.
Single-subject statistical contrasts were set up by modeling
the encoding phase of each trial with a single regressor by
convolving a box-car representation of the onset and dura-
tion of each encoding phase with the canonical hemo-
dynamic response as defined by the SPM analysis
package. In common with the MVPA analysis, we added
additional scan-specific movement and spike regressors to
the first level model to account for large head movements.

Univariate repetition and learning contrasts were estab-
lished by combining every encoding regressor with repe-
tition and learning rate covariates (parametric modulators
in SPM). For the repetition contrast, we correlated the se-
quence repetition number with the BOLD signal response
amplitude in a given brain region. This correlation can be
negative (brain regions become less active in response to
a repeated presentation of the same sequence) or positive
(more activity for later repetitions). For the learning con-
trast, we correlated the trial-by-trial learning parameter
with the BOLD signal response amplitude in a given brain
region. The learning parameter was calculated by sub-
tracting the Levenshtein score for trial n from the score
for the previous presentation of that sequence (n − 1).
The average learning rate across participants is shown in
Figure 2C.

Contrasts for the main effects of Repetition and Learn-
ing were tested by comparing the mean regression
coefficient (β) parameter (expressing the effect of repeti-
tion and learning covariates) against zero for each partici-
pant relative to the residual error in this parameter over
participants (i.e., a random effects analysis). For both con-
trasts, we also needed to rule out changes in the neural
response, which are a result of trial-to-trial variability in
attention. We therefore corrected the effects of learning
by subtracting from the β value for repeating trials a β value
for learning in unique filler trials (i.e., a parameter express-
ing neural changes over time in responses for unique
sequences). This ensures that changes in the response
for repeated sequences can only arise from increased famil-
iarity of the stimuli because of repetition and not because
of attention.

Contrasts of parameter estimates from the least-mean
square fit of single-subject models were entered into
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random-effects analyses (one-sample t tests) as in the
multivariate analysis (FDR threshold of p < .05).

RESULTS

Behavioral Data

To observe a reliable repetition learning effect, perfor-
mance must be shown to increase for a repeated sequence

relative to nonrepeated controls (unique filler sequences).
Hence, slopes of immediate serial recall performance over
the course of the experiment were calculated using least-
squares linear regression for the repeating sequences and
the filler sequences for every subject. A paired t test over
participants with slopes for repeated and filler sequences
as the dependent measure showed a significant Hebb
effect (t(21) = 3.29, p < .003). Separate one-sample t test
showed that the slopes of repeating sequences were

Figure 3. Whole-brain univariate effects of repetition and learning. (A) Repetition, surface view. (B) Repetition, slice view (MNI 10 −4): (1) bilateral
BG cluster, (2) bilateral sensory–auditory cluster, (3) bilateral posterior temporal lobe clusters. (C) Learning, slice view (MNI −16 26): (1) right
caudate nucleus, (2) left ACC. Whole-brain FDR threshold of p < .05.

Figure 2. Change of recall performance: (A) repeating sequences, (B) unique sequences, and (C) rate of learning for repeating sequences.
Behavioral performance data are only shown for trials on which recall was measured. Error bars show SEM for the variability across the participants.
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significantly different from zero (t(21) = 5.81, p < .001),
whereas the slopes of filler sequences were not (t(21) =
0.52, p = .31). Figure 2 shows average slopes over repeat-
ing and filler sequences for all participants.

Conventional Whole-brain Univariate Analysis
of Signal Response Amplitudes

To ensure that we could replicate previous fMRI studies
of sequence learning with our task, we first calculated the
whole-brain univariate maps for both repetition and learn-
ing parameters. Brain activity decreased with repetition
bilaterally in a number of brain areas, with peak voxels
in superior and middle temporal gyrus and sulcus, puta-

men, insular, and premotor cortex. No brain areas showed
a positive correlation with repetition. Only the right cau-
date nucleus and left ACC showed a significant positive
correlation with learning rate (Figure 3, Table 1). No brain
areas showed a negative correlation with the learning
parameter.

Our univariate results are hence in agreement with pre-
vious fMRI findings: We observed a decrease in activation
within the auditory speech processing network as a response
to stimulus repetition (Grill-Spector, Henson, & Martin,
2006; Gabrieli, 1998; Fleischman, Vaidya, Lange, & Gabrieli,
1997) and a positive correlation between striatal activation
and learning rate (Turk-Browne et al., 2009; Seger & Cincotta,
2006; Poldrack et al., 2005; Lieberman et al., 2004).

Table 1. Peak Voxel Coordinates: Whole-brain Univariate Analysis

Cluster Size t Statistic x y z H Region

List Repetition (Negative Correlation)

92 4.4656 40 −44 −12 R inferior temporal gyrus

4.3649 52 −44 −14 R inferior temporal gyrus

38 4.393 −42 −40 −14 L inferior temporal gyrus

38 4.1821 44 −40 4 R STS

30 4.1706 −56 8 2 L superior temporal gyrus

3.5378 −60 −8 −4 L middle temporal gyrus

549 3.9579 28 4 −6 R putamen

282 3.7973 40 −16 64 R precentral gyrus

49 3.1135 56 −20 −2 R superior temporal gyrus

Learning (Positive Correlation)

40 4.349 −16 36 24 L cingulate cortex

101 3.879 12 4 16 R caudate nucleus

Figure 4. Significant increase in the between-repetition pattern similarity in (A) right supramarginal cortex (MNI 58 −40 40), (B) bilateral insula
(MNI 32 24 0), and (C) left hippocampus (MNI −28 −22 −12). Whole-brain FDR threshold of p < .05.
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Multivoxel Pattern fMRI

First, we examined whether any brain regions develop
representations that are tuned to repeating sequences, as
indicated by an increase in between-repetition pattern
similarity over the course of the experiment. A whole-brain
MVPA searchlight analysis was conducted independently
for every voxel neighborhood to yield a whole-brain cor-
rected activation map showing all regions in which the sim-
ilarity in between-repetition activity patterns increased
significantly (Figure 4). Significant increase of pattern similar-
ity was observed in right supramarginal gyrus (t(21) = 3.43,
p= .009; Figure 4A, Table 2), bilateral insula (t(21) = 3.42,
p= .007; Figure 4B), and left hippocampus (t(21)= 3.38, p<
.05; Figure 4C, Table 2). As a control condition, we com-
puted the change in pattern similarity over successive non-
repeating unique sequences. No brain areas showed
significant pattern similarity effects over successive unique
sequences.

Next, we sought to establish whether the representa-
tions that develop are the same for all sequences or come
to encode individual sequences. To show evidence of
sequence-specific representations, we need to show that
similarity between the patterns elicited by different indi-
vidual sequences decreases over repetitions. This analysis
was carried out only for the voxels that had previously
shown a significant between-repetition pattern similarity
effect. This was done to rule out the possibility that the
decrease in pattern similarity might be because of an in-
crease in physiological or measurement (fMRI) noise
over repetitions. Because the exact locations of between-
repetition effects maxima varied across participants, we
used subject-specific anatomical and functional constraints
in selecting the coordinates for between-sequence sim-
ilarity analysis. First, the coordinates of the individual ROIs
had to be located within 16 mm from the group maxi-
mum. Second, the coordinates of individual ROIs had to
fall within the same anatomically defined regions as the

Figure 5. Slopes of between-repetition (top) and between-sequence (bottom) pattern similarity for (A) right supramarginal cortex (MNI 58−40 40),
(B) right insula (MNI 32 24 0), and (C) left hippocampus (MNI −28 −22 −12). Error bars show SEM for the variability across the participants.

Table 2. Peak Voxel Coordinates: Increase in Between-repetition Pattern Similarity

Cluster Size t Statistic x y z H Region

219 3.429 52 −40 40 R supramarginal gyrus

101 3.415 32 24 0 R insula

75 3.201 −30 28 8 L insula

62 3.382 −28 −22 −12 L hippocampus
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between-repetition effects (right supramarginal gyrus, left
hippocampus, and bilateral insula as determined by the
participantʼs anatomical scan).
Only the left hippocampus showed a significant decrease

in between-sequence similarity that was coupled with an
increase in between-repetition similarity (subjectsʼ mean
interaction coefficient was significantly different from zero,
t(21) = −4.02, p < .05, Figure 5). As expected, there was
considerable between-subject variability in the location of
the peak voxels: for five participants, the peak was located
in the parahippocampal cortex rather than the hippocam-
pal formation, and three participants did not display any
significant interaction effect. Overall, the neural activity pat-
terns in the hippocampus representing different sequences
become significantly more distinct from each other as
these sequences were repeated. At the same time patterns
elicited by the same sequence became more similar to
each other over repetitions, indicating convergence to
stable but distinct representations of individual sequences
as a function of learning.
The pattern similarity effects observed above only reflect

how repetition modulates the distributed spatial activity
patterns and not the overall response amplitude. Compar-
ison of univariate and multivariate analysis results showed
that only the insula showed a jointly significant univariate
and pattern similarity effect: brain activity decreased sig-
nificantly with repetition (Figure 3). No other brain areas,
which showed a significant pattern similarity effect, also
displayed a significant univariate correlation effect. Hence,
we can be confident that the emergence of stable patterns
does not arise from changes in response amplitude.

DISCUSSION

Our results show that brain regions in the temporal lobe,
hippocampus, and insula represent repeated verbal se-
quences. Additionally, voxels in the hippocampus and MTL
gradually come to encode the identity of the individual
sequences as shown by decreasing pattern similarity be-
tween individual sequences over repetitions. We showed
that such changes could have not been caused by an in-
crease of noise (measurement or neurobiological) and that
conventional univariate fMRI analysis techniques are not
sensitive to such changes in brain activity.
This contribution of MTL/HC in maintaining distinct

representations of overlapping sequences is supported
by previous research in neurophysiology. HC-lesioned ro-
dents have impaired memory for sequences constructed
from a limited set of odors, despite preserved memory for
the individual odors (Agster et al., 2002) and rodent HC
cells fire differentially to the same sequence of odors when
embedded in different sequences (e.g., ABC in MNABCOP
vs. WXABCYZ; Ginther, Walsh, & Ramus, 2011). Similarly,
using fMRI, Kumaran and Maguire (2006) found that activ-
ity in right posterior hippocampus was correlated with a
subject-specific behavioral index of sequence learning but
only when different repeating sequences were constructed

from the same set of faces. Furthermore, neuronal record-
ings from rodents and humans have shown that hippo-
campal neural ensemble activity corresponding to successive
sequence items becomes gradually correlated (Paz et al.,
2010; Manns, Howard, & Eichenbaum, 2007). In summary,
previous studies suggest that neurons in the HC encode
the temporal order information within a sequence of events
or items.

Our results extend existing knowledge in two impor-
tant ways. First, we have shown how individual sequence
representations develop over the course of repetitions in
MTL/HC brain areas. Specifically, we have shown that indi-
vidual representations becomemore stable over successive
repetitions suggesting that the MTL/HC system encodes
both sequence identity and familiarity. Second, we have
demonstrated that the same structures that have been
shown to play a role in learning sequences of odors and
faces (Devito & Eichenbaum, 2011; Ross et al., 2009;
Kumaran & Maguire, 2006; Agster et al., 2002; Kesner,
Gilbert, & Barua, 2002) are also involved in learning se-
quences of verbal stimuli. Because our task (the Hebb rep-
etition learning task) is commonly seen as a laboratory
analogue of learning overlapping sequences of speech
sounds that comprise new words in a natural environment
(Page & Norris, 2009), our results bridge the respective
neuroimaging literatures of pure sequence learning and
human vocabulary acquisition.

Note that lesion studies suggest that intact MTL/HC is
not necessary for successful sequence learning. Ergorul
and Eichenbaum (2006) showed that, although both HC-
lesioned and normal rats were able to learn overlapping
sequences, lesioned rats required more training. Similarly,
existing neuropsychological data on vocabulary acquisition
would suggest a substantial impairment in word learning
after bilateral hippocampal lesions (Martins, Guillery-
Girard, Jambaqué, Dulac, & Eustache, 2006; Gabrieli,
Cohen, & Corkin, 1988), although some learning remains
(Gardiner, Brandt, Baddeley, Vargha-Khadem, & Mishkin,
2008; OʼKane, Kensinger, & Corkin, 2004; see Davis &
Gaskell, 2009, for a review).

Gagnon, Foster, Turcotte, and Jongenelis (2004)
reported data from a patient with a focal lesion of the hip-
pocampal formation who was very impaired on measures
of episodic memory, yet showed a Hebb effect, suggesting
that learning can take place even with little or no explicit
memory of previous recall episodes. However, Gagnon
et al.ʼs task (2004) included only a single repeating se-
quence whereas our task requires encoding of multiple
and simultaneously learned overlapping sequences. This
suggests that a single sequence can be learned by extra-
hippocampal systems whereas the MTL/HC might be
necessary for dissociating between multiple overlapping
sequences. The stabilizing of individual sequence rep-
resentations over repetitions that we observed in our
study might hence serve as a mechanism that enables
to learn multiple repeating sequences. It would be inter-
esting to know whether individuals with hippocampal
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damage would be able to acquire multiple overlapping
sequences.

Guided by hippocampal anatomy and computational
principles, previous research has proposed that the for-
mation of discrete representations of bindings between
overlapping items depends on a hippocampal pattern sep-
aration process (Diana, Yonelinas, & Ranganath, 2008;
Leutgeb, Leutgeb, Moser, & Moser, 2007; Rolls & Kesner,
2006; Kesner et al., 2002; McClelland & Goddard, 1996).
Specifically, such pattern separation refers to the transfor-
mation of overlapping patterns of cortical input into sepa-
rable hippocampal representations (Diana et al., 2008).
Consistent with these models, we show the emergence
of dissociable hippocampal representations of overlapping
sequences.

Besides the MTL/HC, several other brain areas such as
the posterior temporal lobe and the insula dissociated
repeating and nonrepeating overlapping sequences.
However, these regions do not seem to distinguish be-
tween individual sequences at least over the short period
of learning tested in this study. It remains to be seen
whether—as previously shown for univariate responses to
newly learned spoken words (Davis, Di Betta, Macdonald,
& Gaskell, 2009)—temporal lobe representations of verbal
sequences show evidence of overnight consolidation.

In summary, our findings contribute to a body evidence
supporting a model in which the hippocampus and MTL
encode the temporal order of events of items (Ginther
et al., 2011; Paz et al., 2010; Manns et al., 2007; Agster
et al., 2002; Fortin, Agster, & Eichenbaum, 2002). We addi-
tionally demonstrate that the stability of these representa-
tions is increased by repetition and suggest this underlies
the ability of learning multiple overlapping sequences. Our
results further extend the evidence that the MTL/HC
memory system represents multidimensional relational
information (Konkel & Cohen, 2008). The current findings
also provide a novel fMRI analysis method for evaluating
the representational change as a function of repetition
which cannot be achieved with conventional univariate
analyses.

Reprint requests should be sent to Kristjan Kalm, MRC Cogni-
tion and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2
7E, UK, or via e-mail: kristjan.kalm@ mrc-cbu.cam.ac.uk.
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