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Abstract: 
 
 

Humans are more effective than machines at recognizing speech. This advantage for 

human listeners is particularly pronounced for speech that is heard against 

background noise, contains unfamiliar words or is degraded in other ways. Yet, 

automatic speech recognition (ASR) systems have made substantial advances over the 

past few decades and are now in everyday use by millions of people around the world. 

In this chapter we provide a brief explanation of how ASR systems operate. We then 

suggest three ways in which these systems could potentially be improved by 

capitalising on knowledge of human speech recognition.  

	
 
 
 
 
 
 
Acknowledgements: 
 
Matt Davis was supported by the UK Medical Research Council (MC-A060-5PQ80), 

and Odette Scharenborg was supported by a Vidi-grant from the Netherlands 

Organization for Scientific Research (NWO; grant number: 276-89-003).  



	 3	

In 2009 a company called SpinVox was the subject of media controversy after it was 

revealed that the voicemail transcription service that it supplied was dependent on call 

centres in South Africa and the Philippines. Rather than the fully automated system 

that some had anticipated, behind the scenes they used human listeners to transcribe 

many or perhaps all the voicemail messages that they processed. In 2010 SpinVox 

was sold to a computer speech technology company, Nuance Communications, who 

had previously acknowledged that “Spinvox is offering something that is impossible 

to deliver now”1. At the time of writing it remains unclear whether automated 

transcription of voicemail messages – from any speaker, on any topic, and with the 

background noise and distortion that is common in telephone calls – will ever achieve 

the level of accuracy of human listeners.  

 

Simply put, the most effective system for perceiving speech and recognizing words is 

a human who is a native speaker of the target language and has intact hearing. This 

advantage for human listeners is particularly pronounced for speech that is heard 

against background noise, contains unfamiliar words or is degraded in other ways. 

The goal of the other chapters in this volume is to understand how human listeners 

achieve this remarkable success. This is curiosity-driven science at its most vital and 

informative. Despite the rise of other means of communication such as e-mail and 

messaging services on smartphones, spoken language remains the primary form of 

human communication. The cognitive and neural processes that support successful 

spoken communication are unique to humans and in many ways define what it is that 

makes us human (Pinker, 1994).  

																																																								
1 John West from Nuance’s mobile group quoted at:  
http://www.techweekeurope.co.uk/networks/voip/spinvox-faked-speech-transcription-
service-and-broke-privacy-1451 
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Knowledge of how the human brain perceives and understands speech also has more 

pragmatic purposes, which are the focus of this chapter. Our focus here is on linking 

insights from human speech perception to help listeners that are not human, i.e. 

computer speech recognition systems. This could be considered a key technological 

application of research on human speech perception and spoken word recognition2 – 

however, in practice engineering approaches to automatic speech recognition have 

been (at best) only loosely guided by knowledge gained from studying human speech 

perception. Indeed, perhaps the most famous comment on this topic comes from the 

pioneer of Automatic Speech Recognition (ASR) systems, Fred Jelinek who 

apparently remarked  in the 1980s “Anytime a linguist leaves the group the 

recognition rate goes up” (see Jurafsky and Martin, 2009). The development of 

machine speech recognition systems has proceeded in isolation from the study of 

human speech recognition. A goal of this chapter is to attempt to bridge this divide – 

both by explaining the operation of current state-of-the-art machine recognition 

systems to researchers studying human speech recognition, and by highlighting 

mechanisms that allow human listeners to achieve their remarkable success in speech 

comprehension that are potentially useful for ASR systems. While Jelinek was 

perhaps right to dismiss linguists in favour of engineers at the time, we believe that 

our current understanding of human speech perception can offer useful insights to 

engineers building automatic speech recognition systems. 

In this chapter we will first report on the current status of the recognition of 

speech by machines before describing the underlying computations by which current 

ASR systems operate. We will then consider three ways in which insights from 

																																																								
2	Two further applications of research in human speech perception are to help 
listeners who are hearing impaired (see Mattys et al., 2012) or are not native speakers 
(see Chen & Marian, this volume).	
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human speech recognition might guide future technological advances in machine 

speech recognition. These proposals entail three different forms of human-inspired 

design in which: (1) the nature of the representations, (2) the computational 

implementation or (3) the functions achieved during recognition are modelled on 

human speech perception. Specifically, we seek inspiration from human recognition 

by: (1) adopting articulatory feature representations modelled after the mechanics of 

human speech production, (2) using brain-inspired processing mechanisms (deep 

neural networks, DNNs), (3) incorporating forms of perceptual learning that appear to 

operate in human listeners.  

 

1. Current status of machine speech recognition  

Many of us already use speech recognition technology such as Apple’s Siri, Google 

Now or Microsoft Cortano on a daily basis when interacting with our smartphones. 

These systems are practical, and extremely effective. However, at present none of 

these systems reach 100% accuracy in transcribing single sentences. Such suboptimal 

recognition performance is particularly noticeable in large vocabulary ASR systems 

that have to deal with a wide variety of speakers, degraded speech signals, or different 

types of background noise.  In his seminal 1997 paper, Lippmann showed that 

machines perform more than an order of magnitude worse than humans on a word 

recognition task in degraded conditions (Lippmann, 1997). But despite a large 

improvement of machine performance in noisy or degraded conditions in recent years, 

automatic systems still perform 6-7 times worse than humans (e.g., Hilger & Ney, 

2006 on similar material as used for the comparison by Lippmann, 1997).  

Scharenborg (2007) reviewed the results of systematic comparisons of human 

and machine recognition systems and documented an order-of-magnitude better 
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performance for humans, not only at the word-level (Lippman, 1997; Carey & Quang, 

2005; Juneja, 2012), but also at the level of individual phonemes (e.g., Cutler & 

Robinson, 1992; Meyer et al., 2006; Sroka and Braida, 2005), and at the level of 

articulatory/acoustic features (e.g., Cooke, 2006; Sroka and Braida, 2005; Meyer et al., 

2011). This difference in performance persists even if higher-level lexical, semantic, 

or world knowledge is prevented from influencing perception. This is shown by a 

detailed comparison of human and machine performance on a corpus of logatomes, 

i.e., CVC and VCV sequences without semantic information (e.g., Meyer et al., 2006). 

Thus it is not the case that human advantages at speech recognition are solely due to 

more effective comprehension and use of higher-level linguistic information. 

Artificial systems are impaired at perception as well as comprehension of speech. 

 

When faced with speech that is heard in a noisy background, is spoken in an 

unfamiliar accent or that contains out-of-vocabulary words, automatic systems 

struggle even more (for a humorous illustration of Apple’s Siri system struggling to 

respond to a Scottish English speaker, see http://bit.ly/zY3eV9). Reviews of noise-

robust machine speech recognition systems document the substantial engineering 

effort that has been dedicated to improving the performance of these systems (Li et al., 

2014). Yet, even state-of-the-art performance still falls short of human listeners on all 

but the simplest of listening tasks. A recent series of engineering ‘challenges’ for 

noise-robust speech recognition have shown that for small vocabulary, closed-set 

tasks (reporting letters and/or digits), automated systems can approach human 

performance (see Barker et al., 2012).  Accuracy remains high (>90%) even if the 

speech is quieter than the masking noise (a negative Signal to Noise Ratio, SNR). 

However, for a second challenge which involved a 5000 word vocabulary (Vincent et 



	 7	

al, 2013) all the systems tested produced substantial numbers of errors for speech  that 

is 9 dB louder than background noise; this SNR (+9dB) is typically fully intelligible 

for healthy human listeners (Miller et al., 1951). The best system showed a 15% 

keyword error rate at +9 dB SNR that increased to nearly 30% (Vincent et al, 2013) 

for speech masked by noise of equal amplitude (i.e. 0dB SNR). Healthy human 

listeners typically report connected speech with near perfect accuracy at 0dB SNR 

(Miller et al., 1951). 

 Despite these limitations current automatic systems are an impressive 

technological achievement and have reached a level of performance suitable for near-

universal deployment in modern smartphones (with recognition typically achieved by 

processing speech in the “cloud” rather than in the phone itself). In the following 

section we will briefly describe the computational mechanisms by which these 

systems transcribe heard speech.  

 

2.  How machines recognize speech 

 

The fundamental idea behind all successful machine speech recognition systems 

(following the pioneering work of Jelinek, 1976) is to treat the problem of spoken 

word recognition as a statistical problem – that of determining the most probable 

sequence of words given the acoustic speech input. This is exactly the same goal as 

explicitly stated in recent models of human speech perception (e.g. Norris & 

McQueen, 2008). In both cases, recognition is achieved by Bayesian perceptual 

inference with speech as the sensory input and the most likely word sequence as the 

desired output. However, ASR systems don’t break this inference process into 

discrete parts (what are the most likely speech segments given the sounds heard, 
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which are the most likely words given these speech segments, etc), in the same way 

that might be assumed for a bottom-up account of human speech recognition (see 

Mirman, this volume). Instead, typical ASR systems are designed in such a way as to 

combine acoustic and higher-level information throughout the recognition process 

using a single, integrated search process.  

 

Figure 1 shows a schematic of a typical ASR system in which speech waveforms are 

first passed through an acoustic pre-processor to generate a sequence of vectors that 

represent the mel frequency spectrum (i.e. the energy profile over a frequency space 

similar to that of human hearing) of successive time windows of a spoken utterance. 

These acoustic features provide a relatively robust and compact description of the 

speech signal.  These acoustic vectors provide the input to a search procedure 

(typically implemented using the Viterbi algorithm) that determines the most probable 

sequence of words that would have generated the observed sequence of acoustic 

vectors. In typical implementations, the search algorithm combines multiple sources 

of knowledge concerning (for instance) the probability of the sequence of acoustic 

vectors being generated by specific speech segments (acoustic model), which 

sequences of segments form real words (lexicon) and the relative likelihood of 

different word sequences (language model). Determining the sequence of words that 

is most likely to have generated an observed sequence of acoustic vectors allows an 

ASR system to report the most probably sequence of words contained in the speech 

waveform. The most probable word sequence can then be transcribed, used to drive a 

dialogue system, or for other purposes (see Young, 1996 for a more detailed review).  
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Figure 1: Block	diagram	of	a	typical	machine	speech	recognition	system.	Two	key	

processes	are:	(1)	Acoustic	Pre-Processing	in	which	the	speech	signal	is	passed	through	a	

MEL-scale	filter	bank	followed	by	application	of	a	Discrete	Cosine	Transformation	to	

generate	sequences	of	acoustic	vectors	(Mel	Frequency	Cepstral	Coefficients)	that	

represent	the	speech	waveform,	and	(2)	A	search	algorithm	combines	information	from	

Hidden	Markov	Model	(HMM)	acoustic	models,	a	lexicon	and	a	language	model	to	estimate	

the	probability	of	different	word	sequences	having	generated	the	observed	sequence	of	

acoustic	vectors.	The	maximum	probability	sequence	is	then	returned	as	the	systems	best	

assessment	of	the	sequences	of	words	heard.	 

 

Most machine speech recognition systems achieve recognition by using several 

different representations for different sources of language knowledge (acoustic 

models, lexicon, language model); each of these components is typically chosen 

individually for their computational convenience and performance. An ASR system 

can be constructed from multiple different components because all these parts 

represent information in terms of probabilities that can be readily combined into a 

single search process.  

One commonly used technique for relating the acoustic signal to speech segments are  

Hidden Markov Models (HMMs) which model the expected variation in the signal 

statistically and typically  represent a single phoneme or  a three-phoneme sequence 
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(triphone). These HMMs provide a useful mechanism for dealing with sequences of 

acoustic vectors of variable lengths (e.g. due to differences in speech rate). Words are 

defined in the lexicon as sequences of acoustic models.  Yet another, different 

knowledge source is used in computing the probability of word sequences; most 

systems use a language model that supplies the frequency of occurrence of words and 

the likelihood of different two or three word sequences (bigrams and trigrams) using a 

count of the conditional probability of successive words in a large sample of text or 

speech. Thus, despite agreement among engineers that Bayesian perceptual inference 

is the key to effective machine speech recognition, a number of different components 

can be used to implement this process (see Scharenborg et al., 2005 for a review from 

the perspective of human speech recognition). 

 

During recognition, automatic systems typically use all these different sources of 

information (from the acoustic model, lexicon, and language model) at the same time. 

For any given utterance, the likelihood of the hypothesised word sequences (paths) is 

computed (e.g., using a graphical structure) that represents all the possible speech 

segments present in (some or all of) that utterance. Computing the likelihood of 

different paths involves multiplying the probabilities of sequences of segments so as 

to determine the probability of different words and word sequences. Thus acoustic, 

phonemic and word-based uncertainty is combined into a single, integrated 

optimization process. The length of the word sequence that will be recognised in a 

single optimisation is closely related to the complexity of the language model (for 

instance, if a trigram language model is used, then word sequences that typically 

contain 3 words will be optimised in a single search. This delay allows automatic 

systems to flexibly adjust the hypothesised word sequences, ultimately selecting the 
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word sequence with the best match (i.e. highest probability) to have generated the 

input speech signal. This approach also means that unlike what is often assumed 

about human speech perception, automatic systems do not explicitly recognise speech 

sounds – that is, they do not have any knowledge of which speech segments were 

heard, only that specific words (that plausibly contain specific segments) were heard.  

 

Although this approach yields effective systems for large-vocabulary continuous, 

speech recognition, it is often acknowledged in the automatic speech recognition 

community that the improvements in automatic speech recognition performance over 

the past decades can largely be credited to an increase in computing power and the 

availability of increasing amounts of suitable, high-quality speech material for 

training automatic speech recognition systems (e.g., Bourlard et al., 1996; Moore & 

Cutler, 2001),which both directly lead to more accurate acoustic models (De Wachter 

et al., 2007). For some time, however, increases in performance have slowed, 

reaching asymptote at a level that (as described in section 1) falls short of human 

performance. In order to break through this barrier, simply adding more training 

material will not help, nor is it to be expected that adding ‘better’ training material 

will help (see e.g., Kirchhoff & Schimmel, 2005, who used infant-directed speech to 

train automatic speech recognition systems). Instead, fundamentally new 

methodologies are needed (Bourlard et al., 1996; Moore, 2003; De Wachter et al., 

2007). In this chapter we will discuss three recent developments in ASR which are (to 

varying degrees) inspired by human speech recognition and that might contribute to 

future progress in ASR. 

 

3. Alternative representations of speech signals 
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In implementing automatic speech recognition systems, certain practical decisions 

have to be made concerning the representations used at different levels of the system. 

For example, as described above speech waveforms recorded by a microphone are 

transformed into sequences of acoustic vectors which are used  to train  HMM-based 

acoustic models. The representations that are typically used are Mel-Frequency 

Cepstral Coefficients (MFCCs, Davis & Mermelstein, 1980), based on a non-linear 

spectral representation for each time window of the short-term Fourier spectrum of 

speech (i.e. the spectrum of a spectrum, see Figure 1). These are often described as 

inspired by certain characteristics of the human auditory system (the Mel-frequency 

scale is based on the frequency spacing of human auditory filters at different centre 

frequencies). This proves to be an effective representation of the speech signal for 

HMM-based systems since it removes a great deal of redundant information from the 

speech stream and excludes information that is irrelevant for the recognition of words, 

such as pitch and continuous background noise. This form of data reduction is 

effective for HMM acoustic models working with clear speech since HMMs have 

only a limited ability to deal with non-linearity or redundancy. More detailed (but also 

more redundant) acoustic representations such as the output of an auditory filterbank 

can be used. For example, it has also been proposed that more robust recognition 

performance in difficult listening conditions might be achieved with other 

representations of the speech waveform (Li et al., 2014).  

 

Another form of representation that is commonly incorporated into automatic 

recognition systems is the phoneme. Phonemes are commonly used as the mediating 

step between acoustic signals and specific words, i.e. the acoustic models represent 
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phonemes or triphones and words are made from sequences of these units. This 

approach implements what is known as the 'beads on a string' model of speech 

perception (Ostendorf, 1999). Although this model works satisfactorily for carefully 

produced speech, it runs into problems with more naturalistic speech. This is mainly 

due to the high pronunciation variability in naturalistic speech (e.g. due to 

coarticulation and phonetic reduction processes “stand back” can be pronounced 

/stam bak/ in connected speech, see Gaskell & Marslen-Wilson, 1996). The strict, 

segmental nature of phoneme-based acoustic models limits their sensitivity to the 

fine-grained acoustic detail of speech. For example, in deciding whether the words 

“grade A” or “grey day” is a better transcription of the sounds /greidei/ these systems 

overlook subtle acoustic cues (such as syllable duration, stress patterns, coarticulation, 

allophonic variation, etc) that provide phonetic evidence to distinguish between 

sequences of sounds that occur within a single word or straddle word boundaries. 

Such cues are distributed over time, and do not easily feature in phoneme based 

HMM models but have nonetheless been shown to be used by human listeners (Davis 

et al., 2002; Salveda et al, 2003; Shatzman & McQueen, 2006a/b; see Scharenborg, 

2010 for a review). 

 

To overcome these problems alternative representations have been proposed, such as 

representations based on articulatory features (King & Taylor, 2000; Kirchhoff, 1999).  

These alternative accounts are often motivated with respect to the characteristics of 

the human speech recognition system in which feature representations are often 

proposed to mediate between acoustic and lexical representations of speech (e.g. 

Jakobson, Fant, & Halle, 1952; see also Lahiri & Reetz, 2010; Marslen-Wilson & 

Warren, 1994; Johnsrude & Buchsbaum, this volume). Articulatory or articulatory-



	 14	

acoustic features (hereafter, AFs) describe properties of articulatory events – that is 

the lip, mouth and tongue movements that speakers make when producing speech 

sounds. However, these are typically not embodied in detailed mechanical 

descriptions, but rather abstract classes that characterise the most essential aspects of 

the articulatory properties of speech sounds such as manner and place of articulation, 

tongue position, and voicing. With this type of feature, speech can be represented 

without necessarily assuming a sequence of discrete segments. Consequently, fine-

phonetic detail such as nasalisation of a vowel preceding a nasal sound (such as in the 

vowel of the word “ban”) can contribute to identification of nasal segments (/n/), 

whilst not creating difficulties for the identification of the vowel /a/ (see Lahiri & 

Marslen-Wilson, 1991; Hawkins, 2003).  

 

Many different approaches have been investigated for incorporating AFs into 

automatic speech recognition systems, though to-date none of these have been 

incorporated into commercial ASR systems. These include using artificial neural 

networks (King & Taylor, 2000; Kirchhoff, 1999; Wester, 2003), HMMs (Kirchhoff, 

1999), linear dynamic models (Frankel, 2003), dynamic Bayesian networks (Livescu 

et al., 2003), and support vector machines (Scharenborg, Wan, & Moore, 2007) to 

replace HMM-based acoustic models. AF classifiers have been used to improve 

speech recognition performance in adverse conditions (Kirchhoff, Fink, & Sagerer, 

2002; Kirchhoff, 1998), to build language independent phone recognizers (Siniscalchi 

& Lee, 2014), and to improve computational models of human word recognition 

(Scharenborg, 2010). This last model is particularly helpful for illustrating how the 

use of articulatory features and duration representations can simulate human data on 

the recognition of words in which lexical segmentation creates ambiguity (as for 
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onset-embedded words like cap in captain, cf. Davis et al., 2002; Salverda et al., 

2003; or segmentation minimal pairs like “grade A” and “grey day”, cf. Nakatani & 

Dukes, 1977; Shatzman & McQueen, 2006a/b). 

 

Although promising, the lack of large training corpora that label the speech signal in 

terms of AF values hampers the further development of AF-based systems (only one 

small training set is available, created during the 2004 Johns Hopkins Summer 

Workshop, Livescu et al., 2007). The most popular corpus for research into AF 

classification is the standard TIMIT database designed for comparison of more 

conventional ASR systems (Garofolo, 1988). This is a corpus of read American 

English consisting of high quality manually created phonetic transcriptions using a 

large set of phonetic labels.  Consequently, training and testing of AF classifiers is 

generally achieved by starting from data that is labelled at the phoneme level and 

replacing phoneme labels with their (canonical) AF values. These AF values change 

synchronously at the phoneme boundaries, losing a large part of the potential for AF 

representations as an alternative to segmental representation (Schuppler et al., 2009).  

 

An alternative or complementary proposal to using sub-phonemic, articulatory 

features in ASR is that articulatory features are combined into larger syllabic units 

during recognition (see, for instance, Greenberg, 1999 for a prominent example). It 

has been proposed, for instance, that many forms of pronunciation variability (such as 

duration changes) can be more effectively modelled using syllables rather than 

phonemes as the unit of representation (Greenberg et al, 2003). However, to date, 

there are few viable ASR systems that have been built in this way (see Kirchoff, 

1996; Puurula & van Compernelle, 2010, for attempts). One problem with this 
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approach is that typical ASR systems use segment level transcriptions to link acoustic 

models to a lexicon of known words. A syllable based model that eschews segmental 

representations would have no way to identify the syllables in low-frequency 

monosyllabic words other than by learning from the exemplars of these words that 

occur in the training set. In contrast, a system that works with segmental or AF 

representations can recognise low-frequency words as sequences of more frequent 

segments and is therefore likely to be more successful at word recognition.  

 

These debates in the ASR literature concerning the units of representation that are 

most effective for speech recognition parallel long-standing debates in the literature 

on human speech recognition concerning the nature of speech representations (see 

Johnsrude and Buchsbaum, this volume, or Goldinger  & Azuma, 2003). An 

alternative approach, however, would be to allow the automatic recognition system to 

determine which unit or units of representation most reliably mediate between the 

acoustic signal and word recognition. One way to achieve this is to have automatic 

systems break the input sequences of acoustic features into either pre-defined  ‘units’ 

or ‘units’ that are automatically learned and can then be used in the recognition of 

words (e.g., Aimetti et al., 2009; De Wachter et al., 2007). An alternative approach is 

to use neural network learning algorithms to ‘discover’ suitable intermediate 

representations between speech and words. The next section of this chapter will 

review historical and more recent approaches to ASR using neural networks. 

However, the majority of existing neural network based ASR systems do not use 

neural networks to achieve word recognition directly from acoustic representations 

but rather use neural networks to replace the HMM-based acoustic models in existing 



	 17	

systems. Thus, the flow diagram depicted in Figure 1, with minor modifications, 

remains an accurate description of most current ASR systems. 

 

4. Neural networks for machine speech recognition 

 

Neural networks are multi-layer systems of simple processing units that compute the 

weighted sum of their inputs, which is then passed through a non-linear function and 

output to subsequent levels of processing (see Bishop, 1996; for an introduction). 

These simple, neurally inspired systems have a long history. Their adoption and 

capacities for tasks such as automatic speech recognition have been largely due to the 

development and refinement of learning algorithms that are capable of setting the 

weights on the connections between units so as to solve specific problems (e.g. 

mapping from sequences of acoustic vectors to phonemes or words).  Among the 

earliest of these was the perceptron learning procedure of Rosenblatt (1958). However, 

more significant advances followed the development (or rediscovery) of learning by 

back-propagation of error by Rumelhart, Hinton and Williams (1986) along with 

subsequent extensions of this procedure to train recurrent neural networks – that is 

systems with internal states that retain a ‘history’ of past input and that can therefore 

process signals (such as speech) that unfold over time (Pearlmutter, 1995). Critically, 

back-propagation and other, similar learning algorithms can be used to train networks 

with hidden units. These allow for the input to be transformed into mediating 

representations so that these networks can learn non-linearly separable mappings that 

evade simpler methods such as perceptrons or HMMs (see Bishop, 1996 for a detailed 

presentation of linear separability).  
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As part of a flurry of interest in neural networks that followed the two volume “PDP 

books” in the 1980s (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 

1986) many researchers explored the possibility of using either static or recurrent 

neural networks in machine speech recognition (see Lippman, 1989 for an early 

review of these efforts). However, these systems often failed to achieve sufficient 

scale (in terms of the size of training materials) or accuracy (e.g. phoneme 

identification performance) to supplant existing HMM-based systems. A few notable 

successes were achieved by using hybrid systems in which recurrent neural networks 

with a single hidden layer were used to compute phoneme probabilities from speech 

signals which could then be interfaced with conventional Viterbi-based search 

procedures (see, for instance, Robinson, 1994; Bourlard & Morgan, 1994). Despite 

these early demonstrations, however, the neural network components of these hybrid 

systems were hard to train due to the limited speed of workstation computers at that 

time. Furthermore, the performance advantages offered by systems with a single 

hidden layer were not sufficient to render more conventional HMM systems obsolete 

and training procedures for multi-layer systems were of limited ability. Hence, these 

recurrent network systems were in time replaced by more tractable HMM-based 

systems  as described in section 2 of the present chapter.  

 

Recent years have seen a resurgence of interest in the use of neural networks for 

machine speech recognition. In part this is the result of increases in computer 

processing speed, particularly by using graphics processors to perform fast vector 

computations during training. One striking and influential demonstration by 

Mohamed, Dahl & Hinton (2009) showed that a deep neural network (DNN, i.e. a 

neural network with multiple layers of hidden units between the input and output) 
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could substantially improve on state-of-the-art HMM scores on the TIMIT phoneme 

identification task. This success has led many groups to make updated versions of the 

hybrid systems that were used in the 1990s by using neural networks to replace the 

traditional HMM-based acoustic models (see Hinton et al., 2012 for a review). These 

DNN-based systems are trained using large sets of phonetically labelled speech 

signals to output the posterior probability of different HMM states (phonemes or 

triphones, for example) given a sequence of acoustic states as input. We will therefore 

consider the critical elements of this advance and consider the parallels between this 

approach and proposals made for human speech recognition – a domain in which 

neural network or connectionist approaches remained popular throughout the 

intervening decades (as exemplified by simple recurrent network models, see Gaskell 

& Marslen-Wilson, 1997; Mirman this volume). 

 

The modern resurgence of interest in DNN systems for phoneme identification arises 

not only from the increased speed of modern computers, but also from the 

development of new and more robust methods for training DNNs. One reason for the 

success of DNNs for classification tasks (such as phoneme recognition) is the use of 

generative, pre-training schemes in which a DNN learns (in an unsupervised fashion) 

to represent the acoustic characteristics of the input. Input to these models is often 

supplied using the same Mel-Frequency Cepstral Coefficient (MFCC) representations 

used in HMM-based systems, though other, more redundant auditory representations 

(such as the output of auditory filter banks) have been tried with some success 

(Hinton et al, 2012). The training procedure used is hierarchical – a single layer is 

trained to represent first-order dependencies in the acoustic vectors, before an 

additional layer is added to represent dependencies among these first order 
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dependencies, and then a third layer and so on. Critically, these models are generative 

– connectivity is bidirectional and typical training algorithms (e.g. the contrastive 

divergence algorithm, Hinton et al, 2006) alternate between “wake” phases in which 

the model derives internal representations from the input, and “sleep” phases in which 

the model uses those internal representations to reconstruct input sequences similar to 

those that were presented (see Hinton, 2014 for a overview). These procedures 

provide an effective procedure for discovering compact representations of sequences 

of acoustic feature vectors.  

 

For machine speech recognition, however, it is not sufficient to derive a robust, and 

compact representation of the speech signal. These representations also have to be 

categorized into discrete units (such as single phonemes, N-phones, features, syllables, 

etc), in order to make contact with higher-level representations such as words. Hence, 

the hierarchical stack of units and connections that were trained to represent and 

reconstruct speech signals in a DNN are interfaced with a final layer of units with an 

output function suitable for classifying speech signals into unique categories 

(typically triphones). The entire stack of units (including the lower-level stages that 

were originally trained in an unsupervised manner) are then subjected to 

discriminative or supervised training using the back-propagation learning algorithm 

(Rumelhart et al., 1986). The full system is then able to output the probability of 

different units in the acoustic signal (typically N-phone probabilities) with an 

accuracy unmatched by HMM-based systems (see Hinton et al., 2012). The key 

advance provided by DNNs, relative to both HMMs and recurrent networks with a 

single layer of hidden units is that these networks provide a powerful mechanism for 

learning multiple layers of non-linear features (see Hinton, 2014 for discussion). This 
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success has led to the adoption of DNN methods by many of the major commercial 

speech recognition systems (see McMillan, 2013 for an accessible introduction).  

 

From the perspective of computational modelling of human speech recognition, these 

two stages of training an acoustic model (generative pre-training and discriminative 

training) are reminiscent (in their goal, if not in their methods), of connectionist 

approaches to human spoken language acquisition (see Mirman, this volume). 

Building on recurrent network simulations reported in Elman (1990), a number of 

authors have proposed that early stages of speech acquisition (during the first year of 

life) are well-explained by training recurrent neural networks to predict subsequent 

segments in extended sequences of speech sounds (Cairns et al., 1997; Christiansen, 

Allen & Seidenberg, 1998). These self-supervised neural networks develop internal 

representations that capture important forms of linguistic structure such as words in 

artificially coded speech sequences, and periods of accurate and inaccurate prediction 

reflect knowledge of likely words in connected speech signals. The second stage of 

supervised learning used in these DNN systems is also reminiscent of procedures used 

in training connectionist or neural network models of spoken word recognition (such 

as the Distributed Cohort Model, Gaskell & Marslen-Wilson, 1997, or other similar 

models using localist representations of spoken words, Norris, 1990; Davis, 2003, see 

Mirman chapter). Interestingly, these recurrent network systems appear to perform 

better if both forms of learning (unsupervised prediction, and supervised lexical 

identification) are combined in a single system (Davis, 2003; Mirman et al., 2010). 

 

Despite the gratifying success of neurally-inspired components in machine speech 

recognition systems many of these systems still make unrealistic assumptions about 
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how the temporal structure of the speech signal should be coded. The DNNs 

described so far, mostly use separate sets of input units to code a sequence of acoustic 

vectors. That is, they use different units and connections information that occurs at the 

present and previous time points; they also retain a veridical (acoustic) representation 

of the preceding acoustic context. Thus, these models use an unanalysed acoustic 

context for the recognition of the most likely speech segment in the current acoustic 

vector  (as in Time-Delay Neural Networks described by Waibel et al, 1989). This is a 

spatial method of coding temporal structure (similar to that used in the TRACE model, 

McClelland & Elman, 1986). Spatial coding seems unrealistic as a model of how 

temporal structure and acoustic context is processed during speech perception; 

Humans don’t use different auditory nerve fibres or cortical neurons to process 

sounds that are presented at different points in time, but rather the same neurons 

provide input at all points in time, and perception is supported by internal 

representations that retain relevant context information. 

 

A more appropriate method for coding temporal structure therefore involves using 

recurrent neural networks, in which input is presented sequentially (one acoustic 

vector at a time) and activation states at the hidden units provide the temporal context 

required to identify the current input which can be trained with variants of back-

propagation (see Elman, 1990; Pearlmutter, 1995). Recurrent neural networks were 

initially used successfully in phoneme probability estimation (e.g. Robinson, 1994), 

but were found to be difficult to train, particularly when long-distance dependencies 

must be processed in order to identify speech signals (for instance, if input from 

several previous time steps must be used to inform the current input). Sequences in 

which there are long delays from when critical information appears in the input and 
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when target representations permit back-propagation of error, require that weight 

updates be passed through multiple layers of units (one for each intervening time-

step) during training. These additional intervening units make it more likely that error 

signals will become unstable (since error gradients can grow exponentially large, or 

becoming vanishingly small, see Hochreiter et al, 2001). Various solutions to this 

problem of learning long-distance temporal dependencies have been proposed 

including schemes for incremental learning of progressively longer-distance 

dependencies (e.g. Elman, 1993). Perhaps the most powerful solution, however, 

comes from “Long Short Term Memory” networks proposed by Hochreiter & 

Schmidhuber (1997) in which error signals are preserved over multiple time points 

within gated memory circuits. These systems achieve efficient learning of long-

distance dependencies and are now being used in deep neural network systems for 

acoustic modelling (see Beaufais, 2015). 

 

Despite the successful deployment of these neural networks, their incorporation into 

existing ASR systems has still largely come from replacing single components of 

existing systems with DNNs and not from an end-to-end redesign of the recognition 

process. For example, DNN have been used to replace the HMM acoustic model 

shown in Figure 1. However, this still requires that the phoneme classification output 

of a neural network is transformed into standard HMM states (corresponding to 

phonemes), and a search algorithm is used to combine these HMM states into word 

sequences constrained by an N-gram based language models (essentially the same 

hybrid connectionist approach proposed in Bourlard & Morgan, 1994). More recently, 

some authors have begun to explore the possibility of end-to-end neural network 

based speech recognition systems (e.g. Graves & Jaistly, 2014; Chorowski et al., 
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2014). These systems have not so far been sufficiently successful (or computationally 

tractable) to operate without a traditional N-gram-based language model. Furthermore, 

while DNN-based language models have been proposed in other contexts (e.g. for 

machine translation systems, Cho et al., 2014) these have rarely been interfaced to a 

perceptual system based around a DNN. We note, however, that end-to-end 

computational models of human word recognition have been constructed using a 

recurrent neural network (e.g. Gaskell & Marslen-Wilson, 1997). This ‘distributed 

cohort’ model uses back-propagation to map from (artificially coded) speech 

segments to meaning. While this model is small in scale, and unable to work with real 

speech input recent progress in the use of neural networks for ASR suggest that this 

model could be developed further.  

 

5. Perceptual learning in human and machine speech recognition  

 

Perhaps the most significant challenge for machine speech recognition is that the 

identity of speech sounds is not only determined by the acoustic signal, but also by 

the surrounding context (acoustic, lexical, semantic, etc) in which those sounds occur 

and by knowledge of the person who produced these sounds (their vocal tract 

physiology, accent etc). The optimal use of contextual information in recognition is 

not easily achieved by using either an HMM or a time-delay DNN for acoustic 

modelling in ASR systems. In both cases, only a relatively short period of prior 

acoustic context is encoded in the input to the acoustic models, and perceptual 

hypotheses for the identity of the current segment are determined (bottom-up) only on 

the basis of this acoustic input. For this reason, ASR systems defer decisions 

concerning the identity of specific speech segments until these sub-lexical perceptual 
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hypotheses can be combined with higher-level information (such as knowledge of 

likely words, or word sequences). As shown in Figure 1, identification of speech 

sounds in ASR systems arises through the combination of acoustic models with a 

lexicon and language model so that lexical and semantic/syntactic context can be used 

to support speech identification. 

 

Human recognition shows similar lexical and sentential influences on segment 

identification. This has been shown by changes to phoneme categorization boundaries 

that favour real words or meaningful sentences. For example, a sound that is 

ambiguous between a /t/ and /d/ will be heard differently in syllables like “task” or 

“dark” (since listeners disfavour nonword interpretations like “dask” or “tark”, i.e. the 

Ganong effect; Ganong, 1980). Furthermore, even when disambiguating information 

is delayed beyond the current syllable (as for an ambiguous /p/ and /b/ at the onset of 

“barricade” and “parakeet”) listeners continue to use lexical information to resolve 

segmental ambiguities in a graded fashion (McMurray et al., 2009). Sentence level 

meaning that constrains word interpretation has also been shown to modify segment 

perception (Borsky et al., 1998). Thus, human listeners, like machine recognition 

systems delay phonemic commitments until higher-order knowledge, including 

lexical and semantic information can be used to disambiguate.  

 

However, unlike human listeners, typical ASR systems do not change their 

subsequent identification of speech segments as a consequence of lexically- or 

semantically-determined disambiguation. As first shown by Norris, McQueen & 

Cutler (2003, see Samuel & Kraljic, 2009 for a review) a process of perceptual 

learning allows human listeners to use lexical information to update or retune sub-
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lexical phoneme perception. That is, hearing an ambiguous /s/-/f/ segment at the end 

of a word like “peace” or “beef” that constrains interpretation leads to subsequent 

changes in the perception of an /s/ or /f/ segment heard in isolation. Human listeners, 

infer that they are listening to someone that produces specific fricatives in an 

ambiguous fashion and change their interpretations of these sounds accordingly (see 

Kraljic & Samuel, 2006; Eisner & McQueen, 2006 for contrasting findings, however, 

concerning generalization between speakers).  

 

Recent evidence suggests that for human listeners, perceptual learning only arises for 

ambiguous segments that occur towards the end of a word (Jesse & McQueen, 2011). 

Perceptual learning is thus absent for word-initial /s/-/f/ ambiguities even in strongly 

constraining contexts like “syrup” or “phantom” despite successful identification of 

the spoken words in these cases. Although human listeners can delay making 

commitments to specific phonemes in order to correctly identify words, they appear 

not to use these delayed disambiguations to drive perceptual learning. These 

observations suggest mechanisms for perceptual learning that are driven by prior 

knowledge of upcoming segments and not solely by word identification.  

 

In combination, then, these learning effects point to a form of perceptual flexibility 

that is often critical for successful human speech recognition. Listeners are adept at 

using information gained from previous utterances to guide processing of future 

utterances. In real world listening situations, this learning process is most apparent 

when listeners hear strongly accented speech. Accented speech may contain multiple 

segments for which the form of perceptual learning described previously is required. 

Laboratory studies have shown rapid gains in the speed and accuracy of word 
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identification following relatively short periods of exposure to accented speech 

(Clarke & Garrett, 2004; Adank & Janse, 2010).  

 

One way of describing this process is as a form of (self-) supervised learning similar 

to that used in training deep neural networks (see Norris et al., 2003; Davis et al, 

2005). For human listeners, lexical identification provides knowledge of the segments 

that were presented in the current word. This knowledge is then used in a top-down 

fashion to modify the mapping from acoustic representations to segment identity such 

that a previously ambiguous acoustic input is more easily identified in future. While 

this process is similar to the supervised learning algorithms used in training DNNs, 

the neural networks in current ASR systems do not use such mechanisms during 

recognition. The procedures that are used to train the weighted connections in these 

systems require batched presentation of large quantities of training data including (for 

discriminative training) external signals that supply frame-by-frame ground-truth 

labels of the phonemic content of speech signals. When these systems are used to 

recognise speech they operate with these learning mechanisms disabled (that is, the 

weighted connections between units remain the same irrespective of the utterance that 

is being recognised).  

 

One obstacle to including perceptual learning mechanisms in ASR systems is 

therefore that ASR systems would need to derive top-down supervisory signals 

without external guidance. That is, the system must not only recognise words, but also 

determine whether or not recognition is sufficiently accurate to support changes to the 

mapping from acoustic vectors to segments (since it’s better not to learn from 

incorrect responses). This introduces a further requirement; specifically that the 
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system has an internally-derived measure of confidence in its own recognition. At 

present, however, measures of confidence have not been used for this purpose (see 

Jiang, 2005 for a review of attempts to derive confidence measures from existing 

ASR systems). There is, however, some experimental evidence that  recognition 

confidence may modulate the efficacy of human perceptual learning (see Drozdova et 

al., 2015; Zhang & Samuel, 2014).  

 

Mechanisms for adaptation to speaker-specific characteristics have however been 

incorporated into HMM-based machine recognition systems. These typically operate 

by including additional hyper parameters that are associated with specific utterances 

or speakers heard during training (Woodland, 2001; Yu & Gales, 2007). Techniques 

such as Maximum a Posteriori (MAP) parameter estimation and Maximum 

Likelihood Linear Regression (MLLR) can then be used adapt the trained model 

parameters or to establish hyper-parameters that optimize perception of utterances 

from a new speaker. These methods permit adaptation to a new speaker based on a 

more limited number of utterances than would otherwise be required. Similar 

maximum likelihood methods have also been used in accommodating speakers with 

different length vocal tracts (which systematically change formant frequencies). 

However, a more straight-forward frequency warping can also be used to adapt to 

novel speakers (Lee & Rose, 1998).  

 

One distinction between machine and human adaptation that we wish to draw, 

however, is between machine recognition systems that adapt by using relevant past 

experience of similar speakers and human listeners that show rapid learning even 

when faced with entirely unfamiliar (fictitious) accents. For instance, in studies by 
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Adank & Janse (2010) young listeners showed substantial improvements in their 

ability to comprehend a novel accent created by multiple substitutions of the vowels 

in Dutch (e.g. swapping tense and lax vowels, monopthongs and dipthongs, etc). 

Improvements in comprehension were even more rapid when listeners were instructed 

to imitate the accented sentences (Adank et al., 2010). These behavioural experiments 

point to a form of adaptation that can operate even when listeners have no relevant 

past experience of any similar accent. That this is a form of supervised learning is also 

apparent from research showing that accent adaptation is more rapid for listeners that 

receive supervisory information from concurrent written subtitles (Mitterer & 

McQueen, 2009).  

 

Human listeners also show perceptual learning when faced with extreme, or unnatural 

forms of degraded speech. For example, perceptual learning occurs when listeners 

hear speech that has been artificially time-compressed to 35% of the original duration 

(Mehler et al., 1993), or noise-vocoded to provide just a handful of independent 

spectral channels (vocoded speech, Davis et al., 2005), or resynthesized using only 

three harmonically unrelated whistles (sine-wave speech, Remez et al., 2011). In all 

these cases, listeners rapidly adapt despite having had essentially no relevant prior 

exposure to other similar forms of speech. Once again, many of these forms of 

learning are enhanced by prior knowledge of speech content (e.g. written-subtitles, or 

clear speech presentations) that precede perception of degraded speech (e.g. Davis et 

al., 2005; Hervais-Adelman et al., 2008) further suggesting supervisory mechanisms 

involved in perceptual learning. 
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In sum, this evidence suggests that rapid and powerful learning processes contribute 

to successful identification of accented and degraded speech in human listeners. It 

remains to be seen whether incorporating a similar form of self-supervised learning 

would enhance the performance of machine recognition systems. In explaining the 

abilities of human listeners, computational models of spoken word recognition have 

already been proposed that can adjust their internal processes to simulate perceptual 

learning of ambiguous speech segments (HebbTRACE: Mirman, McClelland & Holt, 

2006; Kleinschmidt & Jaeger, 2014). However, one interesting, and under-explored 

aspect of these models concerns the situations in which such rapid learning is possible. 

We have noted that accurate prior knowledge of the likely identity of upcoming 

speech segments is a necessary condition for perceptual learning to occur (cf. Jesse & 

McQueen, 2011; Davis et al., 2005). Predictive coding mechanisms may provide one 

proposal for how these findings can be accommodated in models of human speech 

recognition (Sohoglu et al., 2012; Gagnepain et al., 2012): accurate predictions for 

upcoming speech signals are reinforced to drive perceptual learning, whereas speech 

signals that lead to large prediction errors provide a novelty signal to drive encoding 

of unfamiliar words.  

 

6. Summary 

 

This chapter has described the inner-workings of machine speech recognition systems 

that have already transformed our day-to-day interactions with computers, 

smartphones, and similar devices. Improvements in the effectiveness and convenience 

of voice input seems set to continue; we imagine that our children will in time be 

amused at our generation’s antiquated attachment to QWERTY keyboards. However, 
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the ASR systems that we have described still fall short of human levels of recognition 

performance. Substantial improvements will be required if our communication with 

machines is to be as seamless as it is with our friends and family.  

 

We have offered three distinct proposals for key aspects of human speech recognition 

that could inspire future developments in machine recognition systems. Specifically, 

we have proposed that it is worth exploring ASR systems that: (1) relax the 

assumption that speech is comprised of a sequence of discrete and invariant segments 

(phonemes), (2) operate in an end-to-end fashion using neural network components, 

and (3) are able to learn from their own successes at recognition. We hope that these 

changes might allow for further progress in achieving accurate and robust machine 

speech recognition. However, we also acknowledge that existing systems are already 

good enough for day-to-day use by millions of people around the world. There is 

much for researchers in human speech recognition to gain from understanding the 

computational mechanisms that have achieved these successes.  We hope that the 

overview of the underlying technology in the present chapter allows psycholinguists 

to learn from the successes of engineers and computer scientists working to improve 

ASR systems. 
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