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Abstract

■ Visual word recognition is often described as automatic, but
the functional locus of top–down effects is still a matter of
debate. Do task demands modulate how information is re-
trieved, or only how it is used? We used EEG/MEG recordings
to assess whether, when, and how task contexts modify early
retrieval of specific psycholinguistic information in occipito-
temporal cortex, an area likely to contribute to early stages of
visual word processing. Using a parametric approach, we ana-
lyzed the spatiotemporal response patterns of occipitotemporal
cortex for orthographic, lexical, and semantic variables in three
psycholinguistic tasks: silent reading, lexical decision, and
semantic decision. Task modulation of word frequency and im-
ageability effects occurred simultaneously in ventral occipito-

temporal regions—in the vicinity of the putative visual word
form area—around 160 msec, following task effects on ortho-
graphic typicality around 100 msec. Frequency and typicality
also produced task-independent effects in anterior temporal
lobe regions after 200 msec. The early task modulation for sev-
eral specific psycholinguistic variables indicates that occipito-
temporal areas integrate perceptual input with prior knowledge
in a task-dependent manner. Still, later task-independent effects
in anterior temporal lobes suggest that word recognition even-
tually leads to retrieval of semantic information irrespective of
task demands. We conclude that even a highly overlearned visual
task like word recognition should be described as flexible rather
than automatic. ■

INTRODUCTION

The investigation of putative top–down effects on per-
ception has a long history in cognitive science (Treisman,
1969; Deutsch & Deutsch, 1963). Printed words are an
interesting special case, because they are complex visual
objects, with an arbitrary form-to-meaning relationship
that is usually acquired over several years during child-
hood (Dehaene, 2009). According to some authors,
“one of the oldest debates in visual word recognition con-
cerns the demarcation between bottom–up and top–
down processing” (Carreiras, Armstrong, Perea, & Frost,
2014). It has been claimed that the field has suffered from
the “curse of automaticity,” that is, the strong view that
early word recognition processes are automatic and not
systematically affected by task demands (Balota & Yap,
2006). However, even behavioral benchmark findings
such as the word frequency effect (faster responses for
more familiar words) depend on the task (Balota & Yap,
2006; Balota, Cortese, Sergent-Marshall, Spieler, & Yap,
2004), and task effects on unconscious masked semantic
priming have been reported (Kiefer & Martens, 2010;
Norris & Kinoshita, 2008). Computational models of word

recognition agree that task effects reflect different use of
information (Norris, 2006; Ratcliff, Gomez, & McKoon,
2004; Grainger & Jacobs, 1996) but do not specify whether
task context affects the retrieval of information. Do task
demands modulate how information is retrieved at the
earliest stages of information retrieval or only how it is
used after an automatic retrieval stage? Empirically dis-
tinguishing these alternatives requires the separation of
the earliest lexico-semantic information retrieval from
later recurrent activation or postrecognition processes.
In the neuroscientific literature, early visual word rec-

ognition is commonly associated with processing in left
ventral temporal cortex, whose role in general complex
visual processing is well established (Lamme & Roelfsema,
2000). However, important questions about the stimulus
and task parameters that modulate these processes are
still unanswered, in particular to what degree a distinction
between “retrieval” and “decision-making” is neurophysio-
logically meaningful. A particular area in ventral occipito-
temporal cortex, labeled the “visual word form area”
(VWFA), has been associated with strictly visual and pre-
lexical feedforward processing in the context of the Local
Combination Detector Model (Dehaene & Cohen, 2011;
Cohen et al., 2000). Price and Devlin’s Interactive Account
assumes that the function of occipitotemporal cortex
“involves the synthesis of bottom–up sensory input with
top–down predictions that are generated automatically
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from prior experience” (Price &Devlin, 2011). Studying the
spatiotemporal dynamics of brain activation in inferior
temporal cortex during visual word processing is therefore
crucial to reveal the nature of early top–down effects.
What exactly is “early” is still debated in the literature.

Although some authors have focused on the N400 time
window with respect to lexico-semantic processing (Kutas
& Federmeier, 2011; Lau, Phillips, & Poeppel, 2008) and,
for example, have associated a P325 with lexical access
(Grainger & Holcomb, 2009), others have claimed that
lexico-semantic processing already happens within the first
200 msec (Pulvermuller, Shtyrov, & Hauk, 2009). In the ob-
ject recognition literature, categorization of complex object
categories has been reported to occur about 150msec after
stimulus onset (Fabre-Thorpe, Delorme, Marlot, & Thorpe,
2001) or even earlier (Kirchner & Thorpe, 2006). Two re-
cent studies converged on the view that lexico-semantic in-
formation retrieval is already under way around 160 msec
following visual word presentation (Amsel, Urbach, &
Kutas, 2013; Hauk, Coutout, Holden, & Chen, 2012). Thus,
systematic task effects in this latency range independent of
general attentional load would be clear evidence that early
lexico-semantic information retrieval is not automatic.
Already based on task effects in behavioral data, Balota

and Yap (2006) proposed their “flexible lexical pro-
cessors” model, suggesting that word processing is adap-
tive to task demands at multiple stages. Unfortunately,
behavioral data are unable to decide whether task effects
occur at early or late stages of processing. Masked prim-
ing effects in ERP data have been used to argue in favor of
automatic and unconscious word processing (Dehaene
et al., 2004; Neely & Kahan, 2001). However, even masked
semantic priming ERP effects have been shown to depend
on the task context (Kiefer & Martens, 2010). In the latter
study, the masked semantic priming effect on the N400
amplitude was smaller when trials were preceded by a
perceptual task compared to a semantic task. The authors
explained their findings using their “attentional sensitiza-
tion” model, which assumes that unconscious processes
can be enhanced or diminished depending on task goals.
Although this indicates that unconscious processing can be
affected by top–down control, it is still not clear whether
task demands affected information retrieval from the
masked prime or the way this information affected target
word processing. Any process leading to the N400 of the
target word may have been responsible for the effect.
A number of previous studies investigating top–down

effects on word recognition have either studied task ef-
fects using slow neuroimaging techniques such as fMRI
(Harel, Kravitz, & Baker, 2014; Twomey, Kawabata
Duncan, Price,&Devlin, 2011;Glezer, Jiang,&Riesenhuber,
2009; Vinckier et al., 2007; Sabsevitz, Medler, Seidenberg, &
Binder, 2005; Chee, Hon, Caplan, Lee, & Goh, 2002) or
used surface ERPs and did not perform source analysis
(Strijkers, Bertrand, & Grainger, 2015; Strijkers, Yum,
Grainger, & Holcomb, 2011; Ruz & Nobre, 2008; Bentin,
Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999).

Here, we used combined EEG/MEG and distributed source
estimation to track the time course of brain activation in left
ventral temporal cortex during visual word recognition un-
der different task demands. We used three tasks that re-
quired processing of letter strings at a linguistic level,
namely lexical decision, semantic decision, and silent read-
ing. These are standard tasks in the behavioral literature,
where, for example, lexical or semantic decision button
press latencies have been compared with voice onset times
(VOTs) in overt naming (Balota et al., 2004).

Importantly, we did not just test for task effects on
general word activation as in some previous studies
(Chen, Davis, Pulvermuller, & Hauk, 2013; Strijkers et al.,
2011; Bentin et al., 1999) but investigated task effects on spe-
cific psycholinguistic variables associated with different as-
pects of the word recognition process: orthographic
typicality, word frequency, and imageability. These variables
have been shown to activate parts of the ventral temporal
cortex in several previous studies (Woollams, Silani, Okada,
Patterson, & Price, 2011; Hauk, Davis, & Pulvermuller, 2008;
Sabsevitz et al., 2005; Kronbichler et al., 2004). The exact pat-
tern of early effects for specific psycholinguistic variables is
still not established in the literature, and effect sizes can be
expected to be small. Thus, we employed sensitive analysis
procedures tomake optimal use of the available information
and applied linear multiple regression analysis to extract
effects of psycholinguistic variables from our EEG and
MEG signals (Smith & Kutas, 2015; Miozzo, Pulvermuller,
& Hauk, 2014; Hauk, Pulvermuller, Ford, Marslen-Wilson,
& Davis, 2009; Hauk, Davis, Ford, Pulvermuller, & Marslen-
Wilson, 2006). Furthermore, we restricted our analysis on
left ventral temporal cortex, a cortical structure most likely
involved in early visual word processing (Taylor, Rastle, &
Davis, 2013; Dehaene & Cohen, 2011; Price & Devlin,
2011), and used an ROI-based analysis similar to the one
of Vinckier et al. (2007) applied to fMRI data.

Our predictions for the general time course of psycho-
linguistic EEG/MEG effects were based on our previous
work (Hauk et al., 2009; Pulvermuller et al., 2009; Hauk,
Davis, et al., 2006; Hauk, Patterson, et al., 2006). We
expected orthographic typicality effects around 100 msec,
and lexico-semantic effects to start around 150 msec. Any
task effects at these early latencies would demonstrate
top–down modulation of word recognition processes at
the earliest stages. This interpretation would be strength-
ened if we could demonstrate systematic differences in
the localization of these effects with respect to task. The
word frequency effect, arguably the most established
psycholinguistic effect in the behavioral literature on
visual word recognition, has been shown to be larger in
lexical decision compared with other tasks (Balota &
Yap, 2006; Balota et al., 2004). It has been argued that this
is because lexical decisions are based on a measure of
“wordlikeness” (Norris, 2009; Grainger & Jacobs, 1996),
which is at least partly derived from orthographic similar-
ity to other words, and in particular whole-word frequency.
We therefore expect larger task effects on our orthographic
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and lexical variables in the lexical decision tasks in visual
cortex and around the putative VWFA (Woollams et al.,
2011; Hauk, Davis, & Pulvermuller, 2008).

Our semantic task may produce larger modulation of
the effects for the semantic variable imageability. We
can expect two possible patterns: Imageability may mod-
ulate activity in amodal semantic areas, such as the ante-
rior temporal lobe (Patterson, Nestor, & Rogers, 2007), or
it may be reflected in visual areas in line with embodied
theories of semantics (Pulvermuller, 2013; Hauk, Davis,
Kherif, & Pulvermuller, 2008). We also included a silent
reading task, which is closer to the way people read
natural text and to reading aloud in the experimental lit-
erature. Thus, this task should emphasize phonological
and possibly inhibited articulatory processes, consistent
with precentral activation for this task in a previous anal-
ysis (Chen et al., 2013). Although we do not have specific
predictions for activation patterns along the ventral tem-
poral cortex, topographic differences among these three
tasks would provide novel evidence for task modulation
of early word recognition processes.

METHODS

Participants

Wehere report results from fifteenparticipants (11women).
A further three participants were tested, but data were
discarded because of excessive body and eye movement
artifacts. Some results for this data set have already been
reported in a previous study, which are independent of
the present analysis (Chen et al., 2013). All participants
were right-handed with mean laterality quotient of 86.9
(SD = 18.4; Oldfield, 1971), were on average 25 years old
(SD = 5.6 years), and had 16.6 years of formal education.
All participants were native English speakers and had
normal or corrected-to-normal vision, and none of them

reported having any neurological disorder or dyslexia.
They were paid £10 per hour (£20 minimum) for their par-
ticipation. The experiment was approved by the Cambridge
Psychology research ethics committee.

Stimuli and Psycholinguistic Variables

Six hundred content words (200 per task) were selected
for the experiment from the MRC Psycholinguistic Data-
base, with word lengths between three and seven letters,
word form and lemma frequency per million greater
than 0, and they were not listed as morphologically com-
plex in the CELEX database (Baayen, Piepenbrock, & van
Rijn, 1993). Bigram frequency, trigram frequency, word
length, word form frequency, lemma frequency, and
neighborhood size (N) were obtained from CELEX data-
base (Baayen et al., 1993). Concreteness and imageability
were obtained from the MRC Psycholinguistic Database.
We computed two further semantic covariates for these
items: number of senses and meanings from the Words-
myth database (www.wordsmyth.net/) and action related-
ness using the rating procedure from Hauk, Davis,
Kherif, et al. (2008), but given our focus on variables that
impact on ventral temporal activity, these variables will not
be considered in our EEG/MEG results.
Stimuli were divided into three lists, matched on all

the variables mentioned above using the Match software
(van Casteren & Davis, 2007; see Table 1). Word lists
were counterbalanced over tasks for different partici-
pants to ensure that item-specific effects cannot contrib-
ute to observed task effects. Two hundred pseudowords
were created for the lexical decision task. They were
matched with the three word lists for word length,
bigram frequency, trigram frequency, and neighborhood
size (N). Twenty common person’s names (e.g., Jack,
Mandy) were used as target trials in the semantic decision

Table 1. Descriptive Statistics for Stimuli

Word List 1 Word List 2 Word List 3 Pseudowords

Word length 5.03 (1.1) 5.05 (1.04) 4.9 (0.89) 4.86 (0.79)

Bigram 32882.39 (12136.29) 33855.98 (13533.4) 34113.87 (13828.06) 34392.19 (14063)

Trigram 3568.2 (2195.92) 3509.98 (2244.32) 3394.78 (2218.53) 3346.39 (2155.28)

N 4.07 (4.29) 4.17 (4.21) 4.2 (4.12) 4.21 (4.05)

Word form frequency 41.92 (76.59) 44.01 (75.69) 42.62 (73.91) N/A

Lemma frequency 80.14 (143.67) 88.06 (204.32) 72.44 (112.21) N/A

Concreteness 511.19 (107.62) 514.99 (97.89) 517.81 (105.73) N/A

Imageability 524.69 (86.01) 527.9 (81.51) 529.33 (84.18) N/A

Action relatedness 3.31 (0.95) 3.32 (0.94) 2.82 (1.2) N/A

Number of meanings 1.15 (0.4) 1.19 (0.51) 1.18 (0.45) N/A

Number of senses 4.62 (3.06) 4.96 (3.14) 5.15 (3) N/A

Mean (SD) for the raw psycholinguistic variables for the three word lists and one pseudoword list.
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task, matched for word length (i.e., three to seven letters)
to the nontarget words. Mix software (van Casteren &
Davis, 2006) was used to randomize the pseudowords
and real words in the lexical decision task, real words in
silent reading, as well as real words and target trial items
in the semantic decision task. Words starting with the
same letter did not follow each other in the experiment.
In order to simplify the EEG/MEG regression analysis, we

grouped variables together according to the intercorrela-
tion pattern, as in previous studies (Hauk, Davis, Kherif,
et al., 2008; Hauk, Davis, & Pulvermuller, 2008; Hauk,
Davis, et al., 2006). Variables that showed high intercorre-
lation were subjected to a PCA, and only the first principal
component was entered into the regression design. For ex-
ample, bigram and trigram frequencies are highly corre-
lated and likely to tap into similar orthographic processes.
We therefore did not attempt to distinguish these two var-
iables from each other and reduced them to one composite
variable Bi/Trigram Frequency using PCA. Similarly, word
form and lemma frequency were combined into one vari-
able Frequency. Concreteness and imageability formed the
variable Imageability, number of meanings and numbers of
senses were grouped as Number of Meanings/Senses, and
number of letters and number of orthographic neighbors
resulted in Length/N. In the latter case, this led to a group-
ing of variables that are likely to reflect different processes,
but the correlation between them was deemed too high to
allow a clear separation of the two.
Table 2 shows the correlations between the original

variables and the regressor from the PCA analysis. This
demonstrates that the composite variables are indeed
correlated with the original component variables and
largely uncorrelated with other factors. Note that we used

a multiple linear regression approach, which does not
require predictor variables to be completely orthogonal.

Procedure

Each participant performed three standard psycholin-
guistic tasks: lexical decision (LexD), silent reading (SilR),
and semantic decision (SemD). LexD required partici-
pants to distinguish between words and pseudowords,
using the left hand middle finger for pseudowords and
the left hand index finger for real words. SilR required par-
ticipants to silently but attentively read words without
making any overt response. SemD required participants
to press a button using their left hand middle finger when
they saw a target word corresponding to a person’s name.
Task order was counterbalanced across participants.

For all three tasks, stimuli were presented for 100 msec
(to focus attention andminimize eyemovements), followed
by a red fixation cross which had variable duration (M =
2400 msec, range = 2150–2650 msec). The average SOA
was therefore 2.5 sec. Words were presented in a fixed
width font (Courier New) in white on a black background.
The longest words (seven letters) had a visual angle of 1.4°.

As LexD took twice as long as the other two tasks (be-
cause of the presence of pseudowords), it was split into
halves so that the whole experiment contained four blocks
of comparable length. Breaks of 10 sec were inserted after
every minute of stimulus presentation. Each block lasted
for 11 min except for SemD, which lasted 12 min because
of the 20 additional target trials. Before the first block of
LexD and SemD, a practice block with 10 items was pro-
vided to ensure both tasks were well understood.

Table 2. Pairwise Correlations between Raw Variables (First Column) and Six PCA Factors (First Row) That Were Entered into
Regression Analysis

Length/N Bi/Trigram Frequency Imageability Action N.MeanSenses

Length 0.91 0.27 −0.07 −0.07 −0.04 −0.22

N −0.91 −0.11 0.09 0.16 0.10 0.34

Bigram 0.19 0.88 0.13 −0.11 −0.06 −0.03

Trigram 0.18 0.88 0.12 −0.08 0.02 −0.04

WordFre −0.04 0.15 0.96 −0.09 0.11 0.09

LemFre −0.13 0.13 0.96 −0.11 0.27 0.27

CNC −0.13 −0.11 −0.13 0.97 0.02 0.04

IMG −0.11 −0.10 −0.07 0.97 0.05 0.02

Action −0.08 −0.02 0.19 0.03 1.00 0.14

N.Mean −0.33 −0.09 −0.01 0.08 0.02 0.83

N.Senses −0.18 0.02 0.32 −0.03 0.21 0.83

Variables that were highly correlated and therefore projected on the same PCA factor were grouped together in the analysis (indicated in bold font).
WordFre = word form frequency; LemFre = lemma frequency; CNC= concreteness; IMG= imageability; N.Mean = number of meanings; N.Senses =
number of senses; Action = action relatedness.
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As SilR required no response inside the scanner, partic-
ipants were administered a surprise postscan recognition
memory test to ensure they had attended to the stimuli.
In this test, they were presented 40 words one at a time
and were required to indicate whether they had seen the
words in the scanner or not by button press. Half of the
words had been presented previously, and the other half
were matched controls. Signal detection analyses were
conducted to compute sensitivity (d 0) from the differ-
ence between hits (correct responses to previously seen
words) and false alarms (incorrect endorsing as old a pre-
viously unseen control word; cf. Snodgrass & Corwin,
1988). The same method was used to compute a d0 mea-
sure of name detection accuracy in SemD.

Data Acquisition and Preprocessing

MEG data were acquired using a 306-channel Neuromag
Vectorview system, which contained 204 planar gradiome-
ters and 102 magnetometers at MRC Cognition and Brain
Sciences Unit. EEG data were acquired using a 70-electrode
EEG cap (Easycap, Falk Minnow Services, Germany). To
ensure accurate coregistration with MRI data, the positions
of five head position indicator coils attached to the EEG
cap, three anatomical landmark points (bilateral preauricu-
lar points and nasion), and 60–100 additional points cover-
ing the whole scalp were digitized with a 3-Space Isotrak II
System (Polhemus, VT). The EOG was recorded by placing
electrodes above and below the left eye (vertical EOG) and
at the outer canthi (horizontal EOG).

The signal-space separation method implemented in
the Maxfilter software of Neuromag was applied to the
raw MEG data to remove noise generated from sources
distant to the sensor array (Taulu & Kajola, 2005). In this
process, movement compensation was applied, bad MEG
channels were interpolated, and data were down-sampled
to a sampling interval of 4 msec. Data acquired in all
blocks except the first one were interpolated to the
sensory array of the first block. A band-pass filter between
0.1 and 40 Hz was applied using MNE software tools
(Gramfort et al., 2014). For averaging, the raw data were
divided into epochs of 600 msec, starting from 100 msec
before stimulus onset. Epochs were rejected if maximum–
minimum amplitudes in the −100 to 500 msec interval
exceeded the following thresholds: 100 μV in the EEG,
100 μV in the EOG, 2500 fT in magnetometers, 1000 fT/cm
for gradiometers. Raw data were browsed for each partici-
pant to check for consistently bad EEG channels, which
were subsequently interpolated.

High-resolution structural T1-weighted MRI images
were collected using a Siemens 3T Tim Trio MR system
with a 12-channel head matrix coil at the MRC Cognition
and Brain Sciences unit. They were acquired using a 3-D
MPRAGE sequence, field of view 256 mm × 240 mm ×
160 mm, matrix dimensions 256 × 240 × 160, 1 mm iso-
tropic resolution, repetition time = 2250 msec, inversion
time = 900 msec, echo time = 2.99 msec, flip angle = 9°.

Parametric Analysis

Multiple linear regression analysis was applied to our EEG
and MEG data following the approach used for EEG and
MEG data in previous studies (Miozzo et al., 2014; Hauk
et al., 2009; Hauk, Davis, et al., 2006). All predictor vari-
ables were entered simultaneously into a linear model.
This results into a set of linear estimators for each vari-
able, which were applied across trials at each EEG/MEG
sensor at each time point for each individual data set.
The resulting event-related regression coefficients (ERRCs)
for each predictor variable were then subjected to further
analysis. Similar to the previous studies, we focused our
analysis on five time windows around peak activations
from root mean square curves for words in three tasks,
as shown in Figure 1: 92–124 msec (in short “100 msec”),
144–176msec (“160msec”), 200–300msec (“250msec”), and
300–400 msec (“350 msec”).

Figure 1. Brain responses to words in all tasks. (A) Root mean
square (RMS) of signal-to-noise ratio collapsed across all EEG/MEG
sensors (magnetometers, gradiometers, EEG) over time. The gray
rectangles show the time windows selected based on peaks in the
RMS curves: 92–124 msec (“100 msec”), 144–176 msec (“160 msec”),
200–300 msec (“250 msec”), and 300–400 msec (“350 msec”).
LexD = Lexical decision task; SilR = Silent Reading; SemD = Semantic
Decision. (B) EEG/MEG source estimates on a group-averaged inflated
brain surface for words averaged across tasks in the time windows
specified above. (C) ROI definitions in left ventral temporal cortex. The
general selection of ROIs was based on Vinckier et al. (2007), but exact
locations were adjusted in a data-driven manner to increase sensitivity.
They were defined based on peaks in overall activity in the epoch
0–400 msec, independently of the effects of interest.
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ERRCs in sensor-based analyses can be interpreted
similarly to “activation differences” between two types
of word: A positive ERRC indicates that activation in-
creases with increasing values of the variable and vice
versa for negative ERRCs. However, ERRCs and ERP/
ERF activation differences have the same ambiguity with
respect to the direction of neural effects: A positive dif-
ference between items of Types A and B (i.e., A > B)
does not reveal whether A is “more positive” or B is
“more negative” without knowing whether A and/or B
produce a positive or negative going response them-
selves. This problem also exists in source space, where
activation values are “signed” with respect to whether
the current flows out of or into the cortical surface. This
sign is usually not of interest, and we are mainly inter-
ested in whether activity intensity (i.e., the absolute dif-
ference from zero) increases or decreases. We applied
the following procedure to address this problem.
In the MNE source space, the sign of ERRCs was adjusted

to indicate whether an increase in a variable value increases
or decreases absolute brain activation. We exploited the
fact that overall activity can be modeled as the average
response to all items (Avg), plus additional contributions
from different predictor variables, for example, predictor
P. Computing the difference |Avg + P| − |Avg|, where
| | indicates the absolute value (i.e., removing the sign),
at a particular vertex tells us whether the predictor P
increases or decreases overall activity (depending on
whether the result is positive or negative, respectively).
This procedure was applied for every predictor variable
at each vertex, and the resulting values were subjected
to statistical analysis and display.

Source Estimation

Our source estimation procedure followed the standard
procedure described for the MNE software (Gramfort
et al., 2014). Minimum norm estimates (Hauk, 2004;
Hämäläinen & Ilmoniemi, 1994) were computed on indi-
vidually reconstructed cortical surfaces using boundary
element models of the head geometry derived from each
participant’s structural MRI images. EEG/MEG sensor
configurations and MRI images were coregistered based
on the matching of about 60–100 digitized additional
points on the scalp surface with the reconstructed scalp
surface from the FreeSurfer software (Version 4.3; surfer.
nmr.mgh.harvard.edu/). Structural MRI images were
processed using the automated segmentation algorithms
of FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, Sereno,
& Dale, 1999). The noise covariance matrices for each
data set were computed for baseline intervals of 200 msec
duration before the onset of each stimulus. For regulari-
zation, the default signal-to-noise ratio in the MNE software
was used (SNR = 3).
The result of the FreeSurfer segmentationwas processed

further using the MNE software package (Version 2.6). The
original triangulated cortical surface (consisting of several

hundred thousand vertices) was spatially down-sampled
to a grid using the traditional method for cortical surface
decimation with an average distance between vertices of
5 mm, which resulted in approximately 10,000 vertices. A
three-layer BEM containing 5120 triangles were created
from scalp, outer skull surface and inner skull surface,
respectively. Dipole sources were assumed to be per-
pendicular to the cortical surface. The combination of
EEG, gradiometer, and magnetometer data was achieved
by prewhitening these data types with their correspond-
ing noise covariance matrices, as is standard in this kind
of analysis (Gramfort et al., 2014; Fuchs, Wagner, Kohler,
& Wischmann, 1999). Simulation and empirical studies
have demonstrated increased sensitivity for combined
EEG and MEG data, especially for spatially extended
sources (Goldenholz et al., 2009; Henson, Mouchlianitis, &
Friston, 2009; Molins, Stufflebeam, Brown, & Hämäläinen,
2008).

Source estimates were computed for each participant,
task, and ERRC, respectively (Hauk, Davis, et al., 2006).
The individual results were morphed to the average cor-
tical surface across all participants, and a grand average
was computed. These grand averages were then dis-
played on the inflated average cortical surface. Activity
values for ROIs (see below) were extracted using MNE
software and functions from the MNE Matlab toolbox.

ROI Analysis

Following the example from an influential fMRI study on
letter string processing (Vinckier et al., 2007), seven ROIs
were selected from posterior to anterior left inferior
temporal region of EEG/MEG source space, as shown
in Figure 1. EEG/MEG source estimates not only have
limited spatial resolution compared with fMRI localiza-
tions but may also be systematically biased (e.g., to loca-
tions closer to the sensors for classical minimum norm
estimation; Hauk, Wakeman, & Henson, 2011; Lin et al.,
2006; Fuchs et al., 1999). A direct translation of fMRI
coordinates to our source space is therefore not recom-
mended. Instead, we used a data-driven approach that
adjusts the locations of ROIs on the basis of independent
contrasts in our own data set.

We selected ROIs along the lateral ventral temporal
lobe to take into account that minimum norm estimation
prefers source locations closer to the sensors, rather in
deeper brain areas. The ROIs were placed at locations
where the contrast All Words against Baseline (averaged
across tasks, and orthogonal to our predictor variables)
produced activation at least once in our analysis epoch.
This guarantees that our measurement configuration is
indeed sensitive to activity from these regions, and they
are not located in “blind spots” (such as radial sources for
MEG). We computed approximate Talairach coordinates
for our ROIs and compared them with coordinates for
the VWFA in the literature (−42 −57 −12 according to
Vinckier et al., 2007). This peak coordinate was closest
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to our ROI 3 (13 mm Euclidean distance), followed by
ROI 2 (14 mm) and ROI 4 (17 mm). We would like to
point out that effects in these ROIs do not necessarily
reflect activity in exactly that location but could also
reflect processes in their vicinity, and in particular more
medial or deeper areas. However, this ambiguity is
inherent to EEG and MEG data (Hauk et al., 2011; Fuchs
et al., 1999).

Although our main interest was in inferior temporal
brain regions, most likely involved in the early stages of
word recognition, of course several other brain regions
have previously been associated with different aspects
of word processing (Taylor et al., 2013). In particular
for the lexical variable Frequency, the role of middle tem-
poral and inferior frontal areas is of interest. We therefore
included three more ROIs into the ANOVA for Frequency
effects: left inferior frontal gyrus, and anterior and pos-
terior regions of the middle temporal gyrus.

For each ERRC, we averaged brain activity for each
time window over all time points and vertices in each
ROI in each task. These data were then subjected to dif-
ferent statistical tests, according to the following strategy.
First, we performed a two-way repeated-measure ANOVA
that included all three tasks (factor Task) and seven ROIs
(Region) to detect differences across ROIs. Degrees of
freedom were adjusted according to Huynh–Feldt where
appropriate. In case of a significant region by task inter-
action (indicative of task induced modulation of responses
to a specific variable), post hoc one-way ANOVAs (factor
Task) were performed in each region to determine those
regions that showed significant task modulation. Paired
two-tailed t tests were applied to analyze significant inter-
actions in more detail.

A significant main effect of Region indicates that an
ERRC varied significantly across regions independently
of task. Post hoc paired-sample t tests were performed
for variables collapsed across tasks to determine which
regional differences produced the effect.

Independently of these ANOVAs, it is still possible that
task-independent effects exist in all ROIs, that is, do not
vary spatially. For completeness, we therefore performed
separate one-sample t tests against zero in each ROI for
each ERRC collapsed across tasks. Results will only be
reported when they survived Bonferroni correction with
respect to the number of ROIs.

RESULTS

Behavioral Results

Mean accuracy in LexD was 94% (SD = 5%). In SilR, the
mean d0 of the postscan word recognition tests was 0.94
(SD = 0.14), which was significantly above 0 (t(14) =
6.74, p < .001; a score of zero indicating chance recogni-
tion). As participants were not warned about this mem-
ory test before the scanning session and different stimuli
were used for each task, this result demonstrates that

participants attended to the stimuli in SilR. Accuracy in
SemD was high (99% correct, SD = 1%) and was also re-
flected in a high mean d0 of name detection in of 4.36
(SD = 0.16), which was significantly above 0 (t(14) =
27, p < .001). A multiple linear regression analysis of
RTs to words in LexD yielded the results summarized
in Table 3.
Of the variables that are relevant for the following EEG/

MEG results, Frequency and Imageability were significantly
negatively correlatedwithRTs. In addition, Action-relatedness
showed a significant negative correlation.

General Time Course of Word Activation

As shown in Figure 1, the time course of signal-to-noise
ratios for the combination of EEG and MEG sensors
exhibited peaks at around 108, 160, and 250 msec after
word onset. MNE source estimation revealed a spread
of activation starting in bilateral posterior occipital cortex
at around 100 msec, moving to anterior temporal lobes
around 250 msec, with more activation in the left hemi-
sphere. General activity decreased at later latencies. Task
effects on the average response to written words have
already been reported elsewhere (Chen et al., 2013). Here,
we focus on task-induced changes in responses corre-
lated with specific psycholinguistic predictor variables.
These effects indicate that the information retrieved for
written words differed depending on the task that partici-
pants perform.
Interestingly, responses did not show activation for

words overall in left inferior frontal areas or around the
angular gyrus. Note that we used combined EEG and
MEG for source estimation, and so a lack of activity can-
not be due to lack of sensitivity of either of these imaging
methods in isolation. This pattern of activation justifies
our focus on ROIs along the left ventral temporal lobe.

Table 3. Behavioral Regression Analysis in Lexical
Decision Task

EEG/MEG (n = 15)

β

Length/N 0.0047

Bigram/trigram frequency −0.0047

Word/lemma frequency −0.1493 ***

Concreteness/imageability −0.0932 **

Number of meanings/senses 0.0267

Action relatedness −0.0485 **

Regression coefficients (β) for each regressor averaged across partici-
pants. Asterisks indicate whether a random effect analysis revealed that
the regression efficient was significantly different from 0 across partic-
ipants (*p < .05, **p < .01, ***p < .001).
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Parametric Source Space Results

In the following, we will report the significant results from
our ROI analyses, separately for each latency range. First, to
validate our regression analysis in combination with source
estimation, we present the source space result for the vari-
able Length/N around 100 msec (Figure 2). At this latency,
the effect can be assumed to be dominated by the word
length (number of letters) component, which has been
shown to produce larger amplitudes in posterior areas in
several previous ERP and event-related field studies (Hauk
et al., 2009; Hauk & Pulvermuller, 2004; Assadollahi &
Pulvermuller, 2003). This pattern of results was confirmed
in our data, which showed distinct peaks of positive cor-
relation for Length/N in occipital brain areas. Combining
activation across left and right occipital ROIs and all
tasks produced a marginally significant difference from zero
(t(14) = 2.00, p = .068) but reached significance in right
occipital cortex (t(14) = 2.2, p < .05). We did not find task
effects on Length/N at this latency. Note that Length/N was
only entered into our analysis as a covariate, and the range
of word lengths in our stimulus set may have been too small
to produce more reliable results. Nevertheless, this analysis
illustrates the sensitivity of our regression analysis as well as
the spatial resolution of our source estimation procedure.

The source distributions and ROI bar graphs that
address our main objectives are shown in Figures 3 and 4.

Figure 2. Parametric source space result for the variable Length/N
at 100 msec. The source distribution (in rear view) shows peaks of
positive correlation in occipital cortex as expected. The bar graph
presents results for an ROI analysis in left and right occipital cortex for
activation averaged across tasks. Note that Length/N was entered into
the analysis only as a covariate, but these results illustrate the sensitivity
and validity of our multiple regression analysis in combination with
source estimation.

Figure 3. Parametric source
space results in left ventral
temporal cortex for effects
before 200 msec. The selection
of latency ranges and ROIs
corresponds to Figure 1.
Bar graphs present ROI results
for each task separately.
Source distributions represent
the task in which ERRCs most
reliably differ from zero (LexD
and SilR, respectively). The
numbers below the bar graphs
indicate individual ROIs,
displayed as black lines in the
brain images. ROI 3 was closest
to the peak coordinate for
VWFA as reported in Vinckier
et al. (2007). Black rectangles
indicate ROIs where the factor
Task produced significant
effects. Horizontal lines indicate
significant differences between
tasks within ROIs. Symbols
on bars indicate ERRCs that
differed from zero: op < .1,
*p < .05, **p < .01.
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Our most important question is whether task effects occur
already at earliest stages of lexico-semantic information
retrieval. Previous studies have shown that these pro-
cesses should begin before 200 msec (Hauk et al., 2012;
Pulvermuller et al., 2009). We therefore present source
space results for the early (pre-200 msec) latency ranges
in Figure 3 and results for later latencies in Figure 4.

100 msec

In the earliest time window (92–124 msec), we found
that effects of Bi/Trigram Frequency on neural responses
were modulated by the task participants performed. The
two-way repeated ANOVA (Region, Task) in source space
revealed a significant Task × Region interaction (F(12,
168) = 2.7, p < .01, ε = 1). Post hoc one-way ANOVAs
in each ROI revealed that task modulation of brain re-
sponses to Bi/Trigram Frequency was significant in a
posterior fusiform region (ROI 2; F(2, 28) = 3.6, p <
.05, ε = 1) and an anterior inferior temporal area (ROI
5; F(2, 28) = 3.5, p < .05, ε = 0.9). This interaction
was due to a more positive correlation in LexD than
SemD in the posterior ROI 2 (t(14) = 2.7, p < .05) and
a more negative correlation in LexD than SilR in the
anterior inferior temporal ROI 5 (t(14) = 2.6, p < .05).
Within ROI 2, Bi/Trigram Frequency effects were signifi-
cantly positive in LexD (t(14) = 2.9, p < .05) and margin-

ally significantly negative in SemD (t(14) = 1.8, p < .1).
Within ROI 5, Bi/Trigram Frequency effects were margin-
ally significantly negative in LexD (t(14) = 1.8, p < .1).

160 msec

Our analyses in the time window 144–176 msec revealed
effects of Frequency and Imageability, both of which
were modulated by the factor Task. For Frequency, the
two-way ANOVA with factors Task and Region revealed
a significant Task × Region interaction (F(18, 252) =
1.8, p < .05, ε = 0.8). Effects of word frequency on be-
havioral responses are generally facilitatory, which would
predict a negative correlation of Frequency with brain
activation. Post hoc one-way ANOVAs revealed a signifi-
cant effect of Task in ROI 4 only (F(2, 28) = 4.6, p <
.05, ε = 1), because of a more negative correlation be-
tween frequency and activity during LexD than during
SilR (t(14) = 2.9, p < .05) and SemD (t(14) = 2.4, p <
.05). Note that ROI 4 is in the vicinity of the putative
VWFA. Within ROI 4, frequency effects were significantly
negative in LexD (t(14) = 3.1, p < .01).
Similarly, previously reported behavioral effects of

imageability (if present) have usually been facilitatory
(i.e., faster behavioral and reduced neural responses for
more imageable words, hence a negative correlation be-
tween imageability and these measures). For our variable

Figure 4. Parametric source
space results in left ventral
temporal cortex for effects after
200 msec. Bar graphs and
source distributions represent
data collapsed across tasks.
The numbers below the bar
graphs indicate individual
ROIs, displayed as black lines
in the brain images. Significant
comparisons among individual
ROIs (e.g., for Bi/Trigram
Frequency at 250 msec) are
not indicated graphically
(only in text). *p < .05,
**p < .01.
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Imageability, the two-way repeated ANOVA (Task, Region)
revealed a significant main effect of Task (F(2, 28) =
3.5, p < .05, ε = 1) because of more negative correla-
tion in LexD than SilR (t(14) = 2.6, p < .05). We per-
formed one-way ANOVAs with factor Task in individual
ROIs to substantiate the main effect across regions. A
significant effect emerged in ROI 4 (F(2, 28) = 3.7, p <
.05, ε = 1) because of more positive correlation between
Imageability and neural responses in SilR than LexD (t(14)=
2.7, p < .05). Within ROI 4, Imageability effects were sig-
nificantly positive in SilR (t(14) = 2.4, p < .05). Thus,
effects of Imageability were distributed across all ROIs
but were most reliable in the vicinity of the putative VWFA.

250 msec

We observed task-independent effects of Frequency and
Bi/Trigram Frequency in the latency range 200–300 msec.
For Frequency, planned one-sample t tests showed

that Region 5 was strongly positively correlated with
Frequency across tasks (t(14) = 5.0, p < .001, Bonferroni-
corrected), as shown in Figure 4. In the adjacent Re-
gion 6, there was a nonsignificant trend for a positive
Frequency effect (t(14) = 2.2, p < .05 uncorrected). Al-
though word frequency effects associated with facilitated
word retrieval have usually been associated with negative
correlations, positive frequency effects have been reported
and interpreted in terms of semantic activation. In our data,
this corresponds well to the localization of these effects
into anterior temporal regions, which will be discussed
below.
For Bi/Trigram Frequency, the two-way ANOVA (Task,

Region) revealed a significant main effect of Region (F(6,
84) = 3.30, p < .05, ε = 0.8). Post hoc paired t tests for
each pair of regions revealed significant differences be-
tween ROI 6 and each of ROIs 1, 2, 3, and 4 (all ps <
.05). Furthermore, ROI 3 differed from ROIs 5 and 7
(both p < .05). Overall, Bi/trigram Frequency showed
more negative correlation in the anterior compared with
posterior inferior temporal gyrus.

350 msec

The latency range 300–400msec showed task-independent
effects of Frequency.
For Frequency, the two-way ANOVA (Task, Region)

revealed a significant main effect of Region (F(9, 126) =
2.6, p< .05, ε= 0.6), because of larger positive Frequency
effects in anterior compared to posterior inferior tem-
poral gyrus: ROIs 6 and 7 showed stronger effects than
ROI 2 or 4; ROI 3 differed from ROI 6 ( p < .05), but
not from ROI 7. No main effects of Task or Region and
Task interaction were found in this time window (F <
0.9, p > .5).
Planned one-sample t tests revealed a significant posi-

tive correlation with Frequency across tasks in Region 6

(t(14) = 3.6, p = .003, Bonferroni-corrected: .005). In
the adjacent Region 7, there was also a nonsignificant
trend for a positive Frequency effect (t(14) = 2.2, p <
.05 uncorrected).

DISCUSSION

Task modulation in occipitotemporal cortex occurred for
the lexical predictor variable Frequency and the semantic
predictor Imageability around 160 msec, preceded by
orthographic effects of the variable Bi/Trigram Frequency
around 100 msec. The finding that the distribution of
early brain activity for specific psycholinguistic variables
depends on task demands indicates that top–down
modulation already affects early information retrieval
processes in visual word recognition. Some previous
studies have already argued for flexible lexical processing
based on behavioral data (Balota & Yap, 2006) and atten-
tional sensitization based onmasked priming N400 effects
(Kiefer & Martens, 2010). We here present evidence for
task modulation of early neural responses contributing
to single-word processing from spatiotemporal brain
activation patterns derived from combined EEG/MEG
measurements.

Although the general pattern of results with respect to
our subtle manipulations of tasks and stimulus variables
is complex, we could replicate previous findings with
respect to the neural time course of visual word recog-
nition seen previously using single tasks. Recent studies
from different groups converge on the view that lexico-
semantic information retrieval can begin, but may not be
complete, around 160 msec (Amsel et al., 2013; Hauk
et al., 2012). This view is supported by effects of Fre-
quency and Imageability on neural responses observed
at around 160 msec in our study. We can also confirm
previous evidence for a fast cascade of effects for differ-
ent psycholinguistic variables within the first 250 msec
after word presentation (Hauk, Davis, et al., 2006),
highlighting the necessity to track brain activity with
high temporal resolution.

We used three psycholinguistic tasks that all explicitly
required our participants to focus their attention on lin-
guistic aspects of the stimuli. They differed with respect
to response selection demands, using a task manipula-
tion similar to previous behavioral studies (Balota et al.,
2004; Balota & Chumbley, 1984). Importantly, it is un-
likely that differences with respect to late response selec-
tion and execution leads to the specific effects observed
at early latencies. We did not observe task effects on
average word activation at the latency of the P1 compo-
nent, which is evidence that our tasks were similar with
respect to visual attention demands (Figure 1, Chen
et al., 2013).

A lot of neuroimaging research has been dedicated to
determine the role of the putative VWFA in ventral occipito-
temporal cortex (Dehaene & Cohen, 2011; Price & Devlin,
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2011). Some authors have claimed that the response of this
area is “strictly visual and prelexical” (Dehaene & Cohen,
2011). It is therefore striking that we found task-induced
modulation of sublexical orthographic responses (Bi/
Gram Frequency) within 100 msec of word onset in areas
anterior and posterior to the VWFA ROI. This latency is
earlier than previous ERP responses that have been asso-
ciated with an involvement of the VWFA (Cohen et al.,
2000) but is consistent with effects of orthographic typical-
ity around 100 msec in ERP studies (Hauk, Davis, et al.,
2006; Hauk, Patterson, et al., 2006). Irrespective of its an-
atomical localization, this demonstrates that early ortho-
graphic processing can be affected by top–down control.

The localization of our orthographic typicality effect is
difficult to reconcile with previous fMRI evidence, which
so far has been scarce and inconsistent. Previous fMRI
studies have reported both positive (Vinckier et al.,
2007; Binder, Medler, Westbury, Liebenthal, & Buchanan,
2006) and negative (Woollams et al., 2011) correlations
with orthographic typicality measures such as our bigram/
trigram frequency. We found effects of the factor Task in
two ROIs: one posterior to the putative VWFA, with more
positive regression coefficients in lexical decision than
semantic decision, and one more anterior showing the
reverse effect. It is possible that previous fMRI results do
not reflect the early and short-lived effects observed in
our study or that significant task modulation explains the
inconsistent observations seen in previous studies.

Our observation of lexical (Frequency) and semantic
(Imageability) effects in the vicinity of the putative VWFA
also challenges the claim that this region plays an exclusive
role in prelexical processing of letter strings (Dehaene,
Le Clec’H, Poline, Le Bihan, & Cohen, 2002). Previous fMRI
studies provide inconsistent evidence for word frequency
effects in the vicinity of the VWFA (e.g., Hauk, Davis, &
Pulvermuller, 2008; Fiebach, Friederici, Muller, & von
Cramon, 2002). Our observation of lexical as well as seman-
tic effects in this area lends support to an interactive view
on the role of occipitotemporal cortex (Price & Devlin,
2011), because it is evident that information from long-
term memory about the frequency of occurrence of
whole-word letter strings affects early brain activation.

The word frequency effect is a benchmark finding in
behavioral visual word recognition research (Rayner,
2009; Balota et al., 2004). Behavioral effects of word fre-
quency are commonly larger in lexical decision compared
to naming or semantic decision tasks (Balota et al., 2004).
In line with this, we also observed more reliable effects in
lexical decision in our source space results. In computa-
tional models, lexical decisions are assumed to be based
on a measure of “wordlikeness,” that is, the probability
that a letter string is a word stored in long-term memory,
for which word frequency is a reasonable approximation
(Norris, 2006; Ratcliff et al., 2004; Grainger & Jacobs,
1996). The Bayesian Reader models word recognition
as a Bayesian decision process, during which perceptual
evidence is combined with prior knowledge from long-

term memory (Norris & Kinoshita, 2012; Norris, 2006).
For a task like lexical decision in which words are pre-
sented in isolation, word frequency is a near-optimal prior.
Our results indicate that an integration of information from
the perceptual input and long-termmemory occurs around
the VWFA.
Imageability effects were distributed across several

ROIs around 160 msec, with larger positive regression co-
efficients in silent reading compared to lexical decision.
The most reliable effect occurred in the same ROI as
the word frequency effect, indicating that activity in this
area is affected by both lexical and semantic information.
Positive correlations for imageability in ventral temporal
cortex have been reported by several previous fMRI stud-
ies (Sabsevitz et al., 2005; Fiebach & Friederici, 2004;
Wise et al., 2000), but some failed to find such effects
(Binder, Westbury, McKiernan, Possing, & Medler, 2005;
Jessen et al., 2000). One study also reported an image-
ability effect using a silent reading task (Hauk, Davis,
Kherif, et al., 2008). This task resembles natural reading,
in so far as we usually read for meaning and not to per-
form a categorical decision. It may surprise that we did
not find more reliable effects in our semantic decision
task. However, our semantic task required participants
to decide whether a letter string was a person’s name
or not. This task does not encourage the retrieval of con-
crete semantic features, for example, related to our
senses or actions, but it did affect anterior temporal lobe
regions in our previous analysis (Chen et al., 2013). The
effects of different semantic tasks on spatiotemporal
brain dynamics should be investigated in future research.
In addition to the early task modulations, it is also strik-

ing that we found task-independent effects of Bi/Trigram
Frequency and Frequency after 200 msec in anterior tem-
poral areas. Bi/Trigram Frequency correlated negatively
with activation, similar to previous ERP results (Hauk,
Davis, et al., 2006; Hauk, Patterson, et al., 2006). Interest-
ingly, the task-independent correlation with Frequency
between 200 and 300 msec was positive and persisted
in the 300–400 msec time window. In previous fMRI stud-
ies, positive correlations with word frequency have been
associated with semantic processing, because higher-
frequency words might be “more likely to elicit automatic
activation in a semantic network due to their extensive
exposure” (Graves, Desai, Humphries, Seidenberg, & Binder,
2010; see also Carreiras, Riba, Vergara, Heldmann, & Munte,
2009). This corresponds well with our effect in the anterior
temporal lobes, which have been assigned the role of a se-
mantic hub—linking word forms with distributed semantic
networks—based on neuropsychological and neuroimaging
evidence (Patterson et al., 2007). The absence of task effects
at later latencies in the ventral stream does not preclude the
possibility that they may exist in other brain regions, but
this was beyond the scope of this article.
The shift of activation from posterior to anterior areas

over time and the absence of task effects in temporal
lobe ROIs at later latencies suggest that the end point
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of the word recognition process in each task was the
retrieval of meaning—all routes lead to semantics. This
conforms to the fact that in most real-life situations we
process letter strings to retrieve meaning, and it confirms
established behavioral evidence that word meaning can
contribute to performance in tasks that do not require
semantic information (Woollams, 2005; Chumbley &
Balota, 1984). However, this does not imply that earlier
processes are not modulated by task demands, as we
could show in our data.
What is the functional significance of our observed

top–down effects on early brain responses? The essential
computation underlying word recognition is the optimal
combination of perceptual evidence with prior knowl-
edge from long-term memory (Norris, 2006, 2013). What
is “optimal” depends on the goal of the person reading,
the material being read, and (in the context of traditional
psychological tasks) the decision to be made at that
time. Efficient recruitment of neuronal resources at early
stages of processing should therefore take into account
the final goal of the recognition process. It may not make
sense to ask questions about “word recognition” without
also asking “word recognition for what?” This implies that
it does not make sense to separate word recognition into
a “retrieval” and a “decision” stage—the two are strongly
intertwined. Surprisingly few neuroscientific studies have
investigated task effects on word recognition, and more
research should be dedicated to this issue in the future.
It is important to note that, although our findings sup-

port top–down modulation of early brain responses, this
does not necessarily imply recurrent activation or feed-
back mechanisms during reading. On the one hand,
the speed and efficiency of visual object recognition have
been taken as evidence for fast feedforward sweeps along
the ventral stream (Serre, Oliva, & Poggio, 2007; Riesenhuber
&Poggio, 2002; Lamme & Roelfsema, 2000; Thorpe, Fize, &
Marlot, 1996). On the other hand, interactive levels of pro-
cessing have been part of models of word recognition for
a long time (Rogers et al., 2004; McClelland & Rogers,
2003) and have been suggested as a general principle of
stimulus recognition in the framework of predictive coding
(Bastos et al., 2012; de-Wit, Machilsen, & Putzeys, 2010).
Our results are, in fact, consistent with both views. Task
demands may change the parameters of a feedforward
stream and hence need not imply interactive processing
(Norris, McQueen, & Cutler, 2000). This does not require
higher-level areas to reactivate or modulate activation in
lower-level areas during stimulus processing. Determining
the neuronal mechanisms by which top–down modulation
is achieved will require detailed connectivity analyses of
spatiotemporal brain dynamics. Our present results are
an important step in this direction.
In conclusion, our results lift the “curse of automa-

ticity” (Balota & Yap, 2006) by demonstrating that the
topography of the earliest brain responses sensitive to
word-specific processes can be modulated by task de-
mands. Thus, even a highly overlearned process such as

word recognition should be considered as flexible rather
than automatic.
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