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Abstract 

A popular method for investigating whether stimulus information is present in fMRI response patterns is 

to attempt to “decode” the stimuli from the response patterns with a multivariate classifier. The sensitivity 

for detecting the information depends on the particular classifier used. However, little is known about the 

relative performance of different classifiers on fMRI data. Here we compared six multivariate classifiers 

and investigated how the response-amplitude estimate used (beta or t-value) and different pattern 

normalizations affect classification performance. The compared classifiers were a pattern-correlation 

classifier, a k-nearest-neighbors classifier, Fisher’s linear discriminant, Gaussian naïve Bayes, and linear 

and nonlinear (radial-basis-function-kernel) support vector machines. We compared these classifiers’ 

accuracy at decoding the category of visual objects from response patterns in human early visual and 

inferior temporal cortex acquired in an event-related design with BOLD fMRI at 3T using SENSE and 

isotropic voxels of about 2-mm width. Overall, Fisher’s linear discriminant (with an optimal-shrinkage 

covariance estimator) and the linear support vector machine performed best. The pattern-correlation 

classifier often performed similarly as those two classifiers. The nonlinear classifiers never performed 

better and sometimes significantly worse than the linear classifiers, suggesting overfitting. Defining 

response patterns by t-values (or in error-standard-deviation units) rather than by beta estimates (in % 

signal change) to define the patterns appeared advantageous. Cross-validation by a leave-one-stimulus-

pair-out method gave higher accuracies than a leave-one-run-out method, suggesting that generalization 

to independent runs (which more safely ensures independence of the test set) is more challenging than 

generalization to novel stimuli within the same category. Independent selection of fewer more visually 

responsive voxels tended to yield better decoding performance for all classifiers. Normalizing mean and 

standard deviation of the response patterns either across stimuli or across voxels had no significant 

effect on decoding performance. Overall our results suggest that linear decoders based on t-value 

patterns may perform best in the present scenario of visual object representations measured for about 

60-minutes per subject with 3T fMRI. 
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Introduction 

Pattern-information analysis has become an important method for investigating distributed 

representations with fMRI (Haxby et al., 2001; Cox and Savoy, 2003; Kriegeskorte, 2004; Kamitani and 

Tong, 2005; Haynes and Rees, 2005;  Kriegeskorte et al., 2006, 2007; for conceptual reviews, see 

Norman et al., 2006; Haynes and Rees, 2006; Kriegeskorte and Bandettini, 2007; Quian Quiroga and 

Panzeri, 2009). A popular method of testing for mutual information between experimental stimuli and 

regional fMRI response patterns is “decoding”:  the classification of response patterns so as to determine 

the stimulus category. Above-chance-level decoding accuracy with any classifier indicates that the 

response patterns contain information about the stimulus category. However, the sensitivity with which 

pattern information is detected by decoding depends on the classifier used, and little is known about the 

relative performance of different classifiers on fMRI data. 

 

How do classifiers differ? 

All classifiers have in common that they use a set of training data to define a decision boundary 

in the space of response patterns, i.e. the space spanned by activity levels of the voxels in the region of 

interest (ROI). Fig. 1 and Table 1 compare the classifiers in detail. Classifiers differ in the shapes they 

allow for the decision boundary (e.g. hyperplanes in linear classifiers; more complex nonplanar 

boundaries in nonlinear classifiers) and in the way the boundary is placed on the basis of the training 

data (e.g. Fisher’s linear discriminant places the decision hyperplane so as to optimally discriminate of 

two equal-covariance Gaussians; a linear support vector machine (SVM) places the decision hyperplane 

so as to maximize the margin to the patterns on either side; Fig. 1). A gentle step-by-step introduction to 

fMRI pattern-classifier analysis is given in Mur et al. (2009), and a more technical one in Pereira et al. 

(2009). 

Most of the classifiers commonly applied to fMRI data were originally developed in statistics and 

machine learning. Their properties are well understood. However, performance in practice will depend 

on how well the classifier’s implicit assumptions (i.e. its inductive bias; Mitchell, 1997) hold in the domain 

in which it is applied and on how much data is available. In the present domain, the classifier’s inductive 

bias needs to be well suited both to the properties of the brain representations investigated and to 

features of fMRI data including various noise components, the dimensionality of the response patterns 

(i.e. the number of voxels considered), and the number of available training patterns. 

The more flexible the decision boundary fitted to separate the stimulus categories in the training 

data, the better it will tend to separate the categories in the training data. However, a more flexible 

boundary is also likely to adapt to the idiosyncrasies of the noise in the training data. This is known as 

overfitting (e.g. Bishop, 2007; Duda et al., 2000; for the relation to circular analysis, see Kriegeskorte et 

al., 2009). A highly overfitted decision boundary might perfectly classify the training data, even if the 

response patterns contain no information about the stimulus category at all. This is why independent test 
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data are needed to assess the performance of a classifier (and to thereby test for stimulus-category 

information in the response patterns). 

The most rigid possible decision boundary is a hyperplane. This is why hyperplane classifiers (i.e. 

linear classifiers) tend to suffer less from overfitting than nonlinear classifiers, which allow more complex 

boundaries. However, overfitting concerns not only the shape, but also the placement of the boundary. 

Though rigid in shape, a hyperplane in a d-dimensional space (e.g. a response pattern space for d 

voxels) requires d parameters to define its placement (e.g. the intersections of the hyperplane with each 

of the axes of the space). In fMRI analysis, overfitting can be substantial even with linear classifiers, 

because the number of voxels in the ROI is often similar to the number of training patterns. 

Reducing the set of possible decision boundaries (i.e. the hypothesis space) is one method of 

reducing overfitting. More generally, overfitting can be reduced by regularization (Krishnapuram et al., 

2005, Hastie et al., 2009), i.e. by using prior assumptions to constrain the ways in which the boundary is 

shaped and shifted so as to discriminate the categories in the training data. Different classifiers utilize 

different implicit assumptions for this purpose (Fig. 1). 

For a given classifier, dimensionality reduction of the response patterns can further reduce 

overfitting and improve classification performance (Mitchell et al. 2004; Guyon and Elisseeff 2003; De 

Martino et al. 2008). The simplest variant of dimensionality reduction is perhaps voxel selection. Mitchell 

et al. (2004) showed that selecting voxels highly responsive to the task was more effective for 

classification performance than selecting voxels discriminative for classification (higher classification 

accuracy for training data by a single-voxel classifier). This suggests that strongly responsive voxels had 

more reliable differences between conditions. Multivariate feature selection procedures have also been 

applied to fMRI data (e.g. Kriegeskorte et al., 2006; De Martino et al., 2008; Björnsdotter Åberg et al., 

2008).  

 

Previous studies comparing classifier performance on fMRI data 

Some previous studies have performed comparisons of different classification methods for fMRI 

data. Cox and Savoy (2003) used SVMs with linear and polynomial kernels for classifying fMRI response 

patterns into categories of visually presented objects. They employed a block-design experiment, and 

used percent-signal-change responses in the lower-tier visual areas as input to classifiers. Linear SVM 

performed better than polynomial SVM, suggesting that the polynomial SVM suffered from overfitting. 

Consistent with this observation, LaConte et al. (2005) also reported results suggesting that linear SVMs 

are superior to nonlinear SVMs for decoding block-design fMRI data. Cox and Savoy (2003) also 

included Fisher’s linear discriminant analysis (LDA). However, the covariance estimates for LDA were 

based on very few data points (one per experimental block) and the sample covariance estimator was 

used, so the covariance estimate was singular for most ROI sizes and LDA could not be fairly evaluated 

for the relevant pattern dimensionalities (larger ROIs).  
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Mitchell et al. (2004) compared Gaussian naïve Bayes (GNB), SVM, and k-nearest-neighbors 

(KNN) classifiers. Results for three different data sets suggested that GNB and SVM perform well. KNN 

was always inferior to GNB and SVM. 

Ku et al. (2008) compared four classification methods for high-field (7 Tesla) high-resolution data 

from monkey inferior temporal cortex: LDA, pattern-correlation classifier (Cor), GNB, and linear SVM. 

Their results indicated similarly good performance of all linear classifiers (SVM, LDA, and Cor) and 

worse performance of GNB, which utilizes nonlinear (quadratic) decision boundaries. 

 

This study 

In the present study we extend previous findings by systematically comparing six classification 

methods under different conditions. The six classification methods are: 

 pattern-correlation classifier (Cor), 

 k-nearest-neighbors classification (KNN),  

 Fisher’s linear discriminant analysis (LDA),  

 Gaussian naïve Bayes (GNB),  

 a linear support vector machine (SVM-lin),  

 and a nonlinear (radial-basis-function-kernel) support vector machine.  

 

Each method was evaluated for each combination of the following variables: 

 brain region (human early visual cortex (EVC) or human inferior temporal cortex (hIT)), 

 region-of-interest (ROI) size (different numbers of voxels), 

 single-voxel response estimate (beta estimate or t-value), 

 pattern normalization (normalization of mean and standard deviation performed either 

across stimuli or across voxels) 

 cross-validation scheme (leave-one-run-out or leave-one-stimulus-pair-out), 

 categorical dichotomy (Animate/Inanimate, Face/Body, and Natural/Artificial) 

 

We performed single-trial classification in all cases, i.e. each test pattern to be classified was 

estimated from the hemodynamic response to a single 300-ms presentation of a visual stimulus. ROIs 

were defined by selecting voxels according to their responsiveness to the object images in a separate 

experiment (cf. Mitchell et al. 2004, Kriegeskorte et al. 2008a). Voxel selection and classifier training 

were always based on data independent of the test data used to assess classifier performance (e.g. 

Kriegeskorte et al., 2009).  

In the literature, some pattern-information studies used beta estimates to define the response 

patterns (e.g. Haxby 2001; De Martino et al., 2008) and other studies used t-values (e.g. Martínez-

Ramón et al., 2006; Kriegeskorte et al., 2008a).  A number of studies used raw  fMRI responses as input 

(typically in percent signal change), defining the patterns by single time points or temporal block 
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averages (Cox and Savoy, 2003; Mitchell eta al., 2004; Haynes and Rees, 2005; Kamitani and Tong, 

2005; LaConte et al., 2005). These latter pattern estimates  are equivalent to beta estimates obtained for 

a design matrix of impulse or rectangular predictors. 

Different response-pattern estimates can yield different decoding performance, but have not 

previously been compared. We therefore compare performance for response patterns defined by either 

beta estimates or t-values. Beta estimates were obtained in a general-linear-model analysis for the 

blood-oxygen-level-dependent (BOLD) signal, which was normalized to percent signal change, so the 

beta estimates are in percent-signal-change units. The t-values were calculated by dividing the beta 

estimate for each voxel by its standard-error estimate. 

Patterns were normalized either for each stimulus across voxels (as implicit to the popular 

pattern-correlation classifier of Haxby et al., 2001) or for each voxel across stimuli (as applied, for 

example, in Ku et al., 2008) by first subtracting the mean and then dividing by the standard deviation 

(Fig. 2). 

We analyzed fMRI response patterns measured in human subjects in a rapid event-related 

experiment in which subjects viewed 96 object images from different categories (data from Kriegeskorte 

et al., 2008a). The analyzed data were taken from two ROIs, in early visual cortex (EVC) and in inferior 

temporal cortex (hIT). Classification was performed for three different categorical dichotomies: 

Animate/Inanimate, Face/Body, and Natural/Artificial. 

 

Methods 

Stimuli and task 

Four human subjects participated in an event-related fMRI experiment, in which they viewed 96 color 

photos of isolated objects on a gray background. The stimulus duration was 300 ms. Each image was 

presented once in each experimental run as part of a random sequence. The minimum stimulus onset 

asynchrony was 4 s. We used a new random sequence for each run (to reduce correlations among 

temporally overlapping hemodynamic response predictors spanning multiple runs, and obtain more 

stable amplitude estimates). Six runs were performed for each subject in a single session. The classifier 

analyses here are based on one such session per subject. 

The object categories were hierarchically organized. We used the super-ordinate level category 

(Animate/Inanimate) and the second-level categories (Face/Body in the Animate category and 

Natural/Artificial in the Inanimate category) for classification tests. Each pattern estimate corresponded 

to a particular stimulus image. The number of stimuli (and associated response patterns) for 

Animate/Inanimate was 96 (48 for each category), for Face/Body it was 48 (24 for each category) and for 

Natural/Artificial it was also 48 (24 for each category). 
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Subjects fixated a continually visible fixation cross and performed a color-discrimination task on 

each trial, reporting a color change of the fixation cross from white to either green or blue, by pressing 

one of two buttons. The fixation-cross color changes occurred at stimulus onset and lasted for the 

duration of the stimulus. Green and blue changes occurred according to a random sequence unrelated 

to the stimulus sequence. More details on the experiment are in Kriegeskorte et al. (2008a). 

 

The fMRI measurements 

The fMRI measurements were performed using a 3T GE HDx MRI scanner (Milwaukee, WI) with 

a receive-only whole-brain surface-coil array (16 elements, NOVA Medical Inc., Wilmington, MA). BOLD 

fMRI was performed by a single-shot interleaved gradient-recalled echo-planar imaging (EPI) sequence 

with SENSE (acceleration factor = 2). The EPI matrix size was 128 x 96, the voxel size was 1.95 x 1.95 x 

2 mm3, the TE was 30 ms, and the TR was 2 s. Twenty-five 2-mm axial slices (no gap), covering the 

occipital and temporal lobe, were acquired. Each functional run consisted of 272 volumes (9 min and 4 

s).  

 

Data preprocessing and response estimation 

The fMRI data sets were adjusted for slice-scan-time differences and corrected for head-motion 

using the BrainVoyager QX software package (R. Goebel, Maastricht, The Netherlands). All further 

analysis was conducted in MATLAB (The MathWorks, Natick, MA, USA). The signal values for each 

voxel were normalized to percent signal change. We performed a single univariate linear model fit to 

extract an activity-amplitude estimate (beta estimate) for each of the 96 stimuli. Each subject was 

analyzed separately at this stage. 

To estimate the response amplitudes, we first concatenated the runs along the temporal 

dimension. We used one hemodynamic response predictor for each stimulus. Since each stimulus 

occurred once in each run, each single-stimulus predictor had one hemodynamic response per run and 

extended across all runs included. The predictor time courses were computed using the hemodynamic 

response model of Boynton et al. (1996). 

The design matrix also included predictors modeling residual head-motion artefact, trends, and 

the baseline signal level. For each run, there were six head-motion-parameter predictors, one linear-

trend predictor, a 6-predictor Fourier basis for nonlinear trends (sines and cosines of up to 3 cycles per 

run), and a baseline (confound mean) predictor. The head-motion, trend, and baseline predictors for 

each run were padded by zeros for the temporal extent of the other runs. 
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Two regions of interest: EVC and hIT 

To define regions of interest (ROIs), we selected the most visually responsive voxels within a 

manually defined anatomical mask. For the early visual cortex (EVC) ROI, the anatomical mask was an 

extended cortical region around the occipital pole and calcarine sulcus, excluding the lateral occipital 

region. For human inferior temporal cortex (hIT), the anatomical mask included all cortical voxels anterior 

to the EVC mask within our ventral-stream measurement slab, which was near-axial, but tilted to run in 

parallel with the ventral temporal cortical surface. Visual responsiveness was assessed using the 

average response (t-value) for the 96 stimuli in a separate experiment. This voxel selection criterion has 

also been used in Mitchell et al. (2004). 

We used three different numbers of voxels for each ROI; 224, 1057, and 5000 for EVC and 316, 

1000, and 3162 for hIT. These ROI sizes were chosen to cover a wide range (with logarithmic spacing). 

Including a large ROI is important because it provides a test of the ability of different methods to handle 

high-dimensional response spaces, where overfitting may become a problem for some methods. 

 

Two cross-validation procedures for estimating generalization performance 

We compared two cross-validation procedures. One is the leave-one-run-out cross-validation. In 

this procedure, data of one run provided the test samples, and the remaining runs provided the training 

samples. Each classifier’s discriminant function was fitted using the training samples. Then the 

classifier’s performance was evaluated using the test samples. The cross-validation had six folds 

because there were six runs. The mean classification accuracy across the six folds was used as the 

estimate of the classifier’s performance. 

The other cross-validation method used was the leave-one-stimulus-pair-out cross-validation. In 

this procedure, one stimulus was taken from each class as a test sample and all remaining stimuli were 

used for classifier training. The responses to each stimulus were estimated using all six runs. We 

performed 100 cross-validation folds with the left-out pairs of stimuli randomly selected such that each 

stimulus was in the test set at least once. 

In the leave-one-run-out cross-validation, classifiers were trained on responses to all stimuli and 

tested on responses to all stimuli on independent data (i.e. the left-out run on each fold of cross-

validation), thus testing generalization within the same stimuli, but across runs. In the leave-one-

stimulus-pair-out cross-validation, classifiers were trained by responses to all stimuli except for one pair 

(with one stimulus in each of the two categories) and tested by responses to the left-out stimulus pair, 

thus testing generalization to novel stimuli within the same categories. 

 

Independence of training and test data 

In order to estimate decoding performance without bias due to overfitting of the training data, the 

test data need to be independent of the data used for voxel selection and classifier training (see 
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Kriegeskorte et al., 2009, for a detailed discussion). The ROIs were defined on the basis of a separate 

experiment. The classifier analyses were performed for these ROIs using data from the event-related 

experiment, which were split (for each subject) into separate training and test sets for cross-validation. In 

the leave-one-run-out cross-validation, the linear model analysis was performed for training and test data 

sets independently and response estimates (beta or t) were estimated from these independent analyses. 

This procedure was repeated on each fold of the cross-validation. In the leave-one-stimulus-pair-out 

cross-validation, all runs were used to estimate the response for each stimulus and responses to 

separate sets of stimuli were used on each fold of cross-validation. As a result, the experimental trials of 

the test set were in the same scanner runs and temporally intermixed with trials in the training set. The 

temporal proximity and slight response overlap may have entailed dependencies between training and 

test sets. We nevertheless include this analysis because it is of methodological interest and does not 

serve to support particular neuroscientific claims here. 

 

Beta or t-value response-pattern estimates 

Patterns of beta estimates (in percent signal change) and t-values were used as input to the 

classification analyses. For each voxel, the beta estimates for each of the 96 stimuli was obtained by the 

linear model analysis described above. The t-value was computed by dividing the beta estimate by its 

standard-error estimate. Because the design contained the same number of stimulus repetitions (in 

random order) for each condition, the t-values here are essentially proportional to the response 

expressed in error-standard-deviation units. (Because of slight random differences in pairwise predictor 

correlations, the factor, by which we multiply the error standard deviation to get the standard error of the 

beta estimate, is not precisely, but only approximately, equal across the 96 stimuli.) The motivation for 

using t-values (or responses in error-standard-deviation units) is to suppress the contribution of noisy 

voxels, which can have high beta estimates due to high noise. 

 

Normalization of response patterns across voxels or across stimuli 

In addition to the comparison of beta and t-values, we evaluated the effect of two types of pattern 

normalization: across stimuli or across voxels. How these normalizations affect the response-pattern 

ensemble is visualized in Fig. 2 and verbally summarized in Table 2. The normalizations are applied to 

the 96 pattern estimates (obtained from the univariate linear model using all runs, except the test run in 

the leave-one-run-out cross-validation). 

In the across-stimuli normalization, we consider the responses to all stimuli for a given voxel. 

First we subtract the mean value across stimuli from the response to each stimulus in that voxel. Then 

we divide the resulting values by the standard deviation across stimuli for the voxel. This procedure is 

repeated for each voxel. The across-stimuli normalization changes the shape of the response pattern for 

each stimulus across voxels (Fig. 2a, upper row). The sample distribution in the voxels’ response space 



is shifted, so as to center it on the origin, and then the distribution is scaled to unit standard deviation in 

each dimension (Fig. 2b, upper row).  

In the across-voxels normalization, we consider the responses of all voxels (within the ROI) to a 

given stimulus. First we subtract the mean value across voxels from the response of each voxel to the 

stimulus. Then we divide the resulting values by the standard deviation across voxels for that stimulus. 

This procedure is repeated for each stimulus. The across-voxels normalization does not change the 

shape of the response pattern to each stimulus; it only shifts and scales each response pattern (Fig. 2a, 

lower row). In the voxels’ response space, subtracting the mean projects the sample distribution onto a 

hyperplane (Fig. 2b, lower row). That hyperplane is orthogonal to the all-1 vector and includes the origin. 

All points on it have coordinates (voxel activities) that sum to zero, reducing dimensionality by 1. Division 

by the standard deviation across voxels then projects the distribution onto a hypersphere within the 

hyperplane. The hypersphere is centered on the origin. In total, the dimensionality of the sample 

distribution is reduced by 2 as samples are projected onto the centered hypersphere within the 

hyperplane. 

 

Six pattern classifiers 

(1) Pattern-correlation classifier 

The pattern-correlation classifier (Cor) classifies patterns according to their Pearson correlation 

coefficient with a category template pattern (Haxby et al., 2001). The template pattern is the average 

response pattern estimated from the training data for each category. The test pattern is classified as 

belonging to the category whose template pattern it is most highly correlated with. Haxby et al. (2001) 

used a pattern-correlation classifier to investigate the representation of categories in the multi-voxel 

response pattern of the ventral temporal cortex.  

 

(2) Gaussian naïve Bayes 

The Gaussian naïve Bayes (GNB) classifier (Mitchell, 1997; Mitchell et al., 2004) models the 

conditional probability density of the response patterns given a stimulus class as a Gaussian distribution 

with a diagonal covariance matrix. The conditional probability P(xj|Ci) of response amplitude xj in voxel j 

given that the stimulus is of category Ci is modeled as a univariate Gaussian. The mean and the 

variance of the Gaussian are estimated from the training patterns. A test pattern x is classified as the 

class Ci whose posterior probability P(Ci|x) is maximal among all classes. Because the within-class 

covariance is assumed to be diagonal (i.e. no correlations between voxels across patterns within the 

same class), the probability density P(x|Ci) of a response pattern x for a stimulus of class Ci obtains as 

the product of the univariate Gaussian marginals:  j iji CxPCP )()(x , where the single-voxel 

responses xj form the response pattern x. P(Ci|x) is estimated by the Bayes rule:  
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There are two variants of GNB, which differ with respect to their models of variance. The shared-

variance model assumes that the variance of a voxel is identical for all classes. The variance is 

estimated by the sample variance of the pooled data taken from all classes with the class mean 

subtracted from each value. In the distinct-variance model, the variance is estimated separately for each 

class. The shared-variance model yields a linear decision boundary (i.e. a hyperplane). The distinct-

variance model yields a quadratic (i.e. nonlinear) decision boundary (Fig. 1). We compared both variants 

of GNB (comparison not included in the figures). The distinct-variance model gave better performance in 

most cases, although the difference was not significant. We report the results of GNB using the distinct-

variance model. 

 

(3) Fisher’s linear discriminant analysis 

Fisher’s linear discriminant analysis (LDA) determines the discriminant dimension in response-

pattern space, on which the ratio of between-class over within-class variance of the data is maximized 

(Duda et al., 2000; Bishop, 2007). After projection of the data on this linear discriminant dimension, a 

classification threshold is placed at the midpoint between the two class means. This is equivalent to 

placing a decision hyperplane orthogonal to the discriminant dimension in response pattern space. The 

resulting classifier is Bayes-optimal (ignoring estimation error) if the distributions corresponding to the 

two classes are Gaussian and have equal covariance. LDA is closely related to GNB (described above, 

under (2)) in that both classifiers assume Gaussian within-class distributions. However, GNB relies on a 

less flexible distributional model in that it assumes zero off-diagonal covariance (i.e. no correlations 

between voxel pairs across the response patterns within a class). The distinct-variance version of GNB 

used here is more flexible than LDA in that the two classes can have different variances (i.e. different 

variabilities within each class for a given voxel). This renders the decision boundary a quadratic surface 

(i.e. nonlinear) in GNB. 

In a two-class classification problem, the normal vector of the hyperplane, w, which points along 

the discriminant dimension of LDA, is estimated as 

w  SW
1 (m1  m2 ) ,  (2) 

where m1 and m2 are mean vectors of each class, and Sw is a within-class covariance matrix. When the 

discriminant value y(x) = wT (x - m) for a sample x (x is a vector of voxel values, and m is a mean value 

of all samples) is positive, it is classified as class 1, otherwise it is classified as class 2. In LDA, the 

covariance structure for each class is assumed to be identical and is often estimated from the training 

patterns xn as the sample covariance: 
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When the number of samples is smaller than the dimensionality of the data, the sample 

covariance is not invertible, and so cannot be used to compute the discriminant weights w. In order to 

ensure invertibility and improve the stability of the covariance estimate, we use the optimal-shrinkage 

covariance estimator described in Ledoit and Wolf (2003) (see also Schäfer and Strimmer, 2005; 

Kriegeskorte et al., 2006), which optimally shrinks the off-diagonal values of the sample covariance 

toward zero. 

 

(4) k-nearest-neighbors classifier 

In the k-nearest-neighbors (KNN) classifier, a test pattern is classified as belonging to the class 

that is most frequent among the k nearest training patterns (Duda et al., 2000; Bishop, 2007). The 

parameter k is a positive integer. In the two-class case, k can be set to an odd number to avoid tied 

classes. KNN is related to the pattern-correlation classifier (described above, under (1)) in that it stores a 

set of class-related reference patterns and classifies test patterns by determining the nearest reference 

patterns. However, in the pattern-correlation classifier there is only a single reference pattern for each 

class: the average of the training patterns for that class and only the nearest reference pattern is 

considered (as opposed to the k nearest ones). In KNN, each training pattern serves as a separate 

reference pattern. The nearest patterns are often determined using the Euclidian distance in KNN, but 

here we used the correlation distance (i.e. 1-r, where r is the Pearson correlation coefficient). This is 

more consistent with the pattern-correlation classifier. Moreover, we compared both measures for KNN 

and found significantly better or equivalent performance using the correlation distance (comparison not 

shown in the figures). 

KNN can be motivated as selecting the class of maximum posterior probability based on a 

nonparametric local probability estimate. We assume that the frequencies of the classes in the training 

data represent the prior probabilities of the classes (e.g. an equal number of training patterns for each 

class represents equal prior probability of each class). The posterior probability of class Ci given test 

pattern x can then be estimated as: 

p(Ci x) 
Ni

N  , (4)
 

where N is the total number of training patterns of any class and Ni is the number of training patterns of 

class i among the k nearest patterns. In contrast to LDA and GNB, which assume Gaussian distributions, 

KNN does not assume a particular shape of the distribution. The decision boundaries of KNN are 

nonlinear (Fig. 1). The parameter k affords a means of adjusting the size of the neighborhood, across 

which we compute a combined probability-mass estimate, promising some robustness against overfitting 

despite the nonlinear nature of the method and its attractive ability to model arbitrarily complex 

distributions given sufficient data. The optimal k was selected by five-fold cross-validation performed on 
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the training data. We searched k = 1, 3, 5, 9, 13, 21, 35, and 57 for Animate/Inanimate classification and 

k = 1, 3, 5, 7, 9, 13, 21, and 31 for Face/Body and Natural/Artificial classifications. 

 

(5) Linear support vector machine 

A linear support vector machine (Fig. 1, SVM-lin) places a decision hyperplane in pattern space to 

classify test patterns into two classes. In this respect it does not differ from LDA. However, the 

hyperplane is placed by a different criterion: SVM-lin chooses the hyperplane that has the maximum 

margin, i.e. the hyperplane that separates the classes with the maximum safety clearance to the closest 

training patterns on either side (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Duda et al. 2000; 

Bishop, 2007). 

For intuition, consider the case of a few training data points and at least as many dimensions, 

where a hyperplane can perfectly discriminate the training data. We start with some hyperplane that 

achieves this. Now imagine the plane thickening to form a rigid planar sheet. The sheet shifts and 

rotates when it hits training data points as it continues to thicken. It keeps thickening until it cannot grow 

any further without including a training data point. The training data points touching (and jointly fully 

constraining) the sheet are called the support vectors. The hyperplane chosen by SVM-lin is the central 

plane within the planar sheet. Note that this method will uniquely define a separating hyperplane in 

arbitrarily high-dimensional spaces even for just two training data points. In the latter case, the 

hyperplane will orthogonally bisect the connection between the two training data points. 

The general case, where the training data points cannot be perfectly separated is handled by 

allowing a few misclassifications among the training data points. A parameter C (> 0) defines a penalty 

for misclassification. C is important for good generalization performance as it controls regularization, 

which counteracts overfitting of the training data. Here, C was selected by grid search in the range of C = 

2-5 to 215 using five-fold cross-validation within the training data. We used the LIBSVM-2.88 package 

(Chan and Lin, 2005) for the SVM analyses. 

 

(6) Nonlinear radial-basis-function support vector machine 

The linear support vector machine (described above) can also be used to create nonlinear decision 

boundaries: by first redescribing the data using a kernel function so as to define a higher-dimensional 

alternative space. The kernel function maps the original data space to the higher-dimensional space. A 

linear SVM can then be used to define a decision hyperplane. The hyperplane in the higher-dimensional 

space corresponds to a more complex nonlinear decision boundary in the original data space. 

We included an SVM with a radial-basis-function kernel (SVM-RBF). For SVM-RBF, the width γ of 

the radial basis function is a critical parameter, along with the C parameter described above. Here, the 

optimal C and γ were selected by grid search in the range of C = 2-5 to 215 and γ = 2-15 to 23 respectively, 

using five-fold cross-validation within the training data. 
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 Differences and commonalities between classifiers 

To maintain an overall view, let’s briefly review the main differences and commonalities among 

the six classifiers (as summarized in Table 1). GNB and LDA are similar in that they assume a Gaussian 

distribution for the response patterns of each class. However, LDA models within-class correlations 

between voxels, which GNB assumes to be absent. GNB, here, uses distinct variance estimates for 

each class, while LDA assumes a distribution of equal shape (only shifted) for each class. As a result, 

LDA decision boundaries are hyperplanes, whereas GNB decision boundaries are quadratic surfaces. 

Cor and KNN both classify test patterns by looking for the most similar reference patterns. However, 

KNN looks for the k most correlated training patterns (and classifies by majority vote), whereas Cor looks 

for the most correlated class-average training pattern. LDA, Cor, and SVM-lin use linear (i.e. hyperplane) 

decision boundaries, whereas GNB, KNN, and SVM-RBF use nonlinear decision boundaries. GNB, LDA 

and KNN can be motivated on the basis of models of the class-conditional response-pattern 

distributions. The distributional models are Gaussian for GNB and LDA, and nonparametric for KNN. Cor 

and SVM, in contrast, are motivated by the goal of classification (without implicit or explicit modeling of 

the distributions). 

A classifier with stronger implicit assumptions (i.e. stronger bias) is expected to have better 

generalization performance as long as the assumptions are approximately correct. In fMRI pattern 

classification, the number of training patterns is typically small relative to the dimensionality of the 

response-pattern space (i.e. the number of voxels). This is the case in the present study as well. We 

therefore expect generalization performance (and thus sensitivity to pattern information) to benefit from 

strong implicit assumptions even if those assumptions are not precisely correct. Note that violations of 

the assumptions will reduce sensitivity, not specificity, so the resulting test of pattern information will be 

valid even if the classifier’s assumptions are violated. 

 

Results 

Statistical analysis 
Statistical comparison of the performance of different classifiers requires that we account for the 

dependency between the accuracy estimates resulting from the use of the same data with each classifier 

(Dietterich, 1998; Nadeau & Bengio, 2003). Here classification performance was compared between 

classifiers using paired t tests. We first computed the average classification accuracy across cross-

validation folds for each stimulus. The difference of these stimulus-specific average performances 

between methods (i.e. different response estimates, classifiers, and pattern normalizations) were then 

statistically compared. The statistical analyses were performed separately for each subject. The analysis 

was performed independently for each cross-validation procedure, ROI location, ROI size, and category 

dichotomy. Because the levels of these factors were related to each other, they could not be used as 

independent factors of an ANOVA (Demšar, 2006). For simplicity, we report significant differences (p < 

0.05, Bonferroni corrected) observed for at least two of four subjects. 
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The effect of the type of response estimate (beta and t) on decoding performance 

Fig. 3 shows the differences of classification accuracies between the two types of response-

pattern estimate (t-values and beta estimates). Significant differences (p < 0.05) that were seen in at 

least two of four subjects were marked by asterisks in Fig. 3. Classifiers had better performances with t- 

than beta estimates in most cases. We found no significant negative effect of using t-values. 

An advantage of t-values was observed for Cor, KNN, and SVMs. GNB and LDA were not 

sensitive to the difference between t and beta. The latter result is not surprising, because GNB and LDA 

model each voxel’s variance separately by an entry along the diagonal of the covariance matrix, thus 

adapting to changes of scale applied separately to each voxel – as in the conversion from beta 

estimates to t-values. Because t-values gave better performance in most cases, all further results 

reported will be using t- rather than beta estimates. 

 

The effect of the cross-validation method on decoding performance 

The leave-one-run-out cross-validation (Fig. 4, Fig. 6a) produced lower accuracies than the 

leave-one-stimulus-pair-out cross-validation (Fig. 5, Fig. 6b). In the leave-one-run-out cross-validation, 

classifiers were trained on a subset of scanner runs (all but one run), using all stimuli, and had to 

generalize to separate runs (for the same stimuli). In contrast, in the leave-one-stimulus-pair-out cross-

validation, classifiers were trained on a subset of stimuli (all except one pair of stimuli), and had to 

generalize to novel stimuli (measured in the same runs). The results suggest that generalization to new 

runs was more difficult than generalization to new stimuli within the same class. 

 

The effect of the choice of pattern classifier on decoding performance 

Fig. 4 and 5 show the classification accuracies for each ROI, category definition, and ROI size. 

The connecting lines between bars indicate significant (p < 0.05) differences between classifier 

performances (paired t test) in at least two of four subjects. The p values were corrected by the 

Bonferroni method (p value divided by 15, the number of possible comparisons between six classifiers). 

Reporting significant differences seen in at least two of four subjects (marked by connecting lines 

above the bars in Figs. 4 and 5) is safe, because it controls the probability of falsely reporting a 

difference: Under the omnibus null hypothesis that there are no differences between any two classifier 

accuracies in any subject, the probability of marking any two bars as significantly different is p < ( 

(0.05/15)4 + (0.05/15)3 * (1 - 0.05/15) * 4 + (0.05/15)2 * (1 - 0.05/15)2 * 6 ) * 15 = 0.00099 for a given 

panel of Fig. 4. For all 18 panels of Fig. 4, the probability of reporting a difference under the omnibus null 

hypothesis is p < 0.018. The same goes for Fig. 5, and for Figs. 4 and 5 together, the probability of a 

false positive classifier difference is p < 0.036. 
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In Figs. 4 and 5, classifiers were ordered by their accuracies. The result most consistently 

observed across regions, region sizes and cross-validation methods was that GNB performed 

significantly worse than other classifiers. This may reflect the fact that close-by fMRI voxels tend to be 

substantially correlated, whereas GNB assumes the absence of correlations between voxels across the 

patterns of a class. KNN tended to do better than GNB, but was never significantly better than linear 

classifiers. SVM-RBF performed unreliably, falling among the worst- or the best-performing classifiers in 

different contexts. 

The three linear classifiers (Cor, LDA, and SVM-lin) performed best overall. LDA and SVM-lin 

were often the best classifier. 

 

The effect of the ROI and its size 

For EVC, decoding accuracies did not exceed chance-level performance on average across 

subjects for any classifier or category dichotomy in the leave-one-run-out cross-validation. However, the 

animate/inanimate dichotomy could be decoded with significant accuracy with linear classifiers in some 

subjects in the leave-one-run-out cross-validation and in most subjects in the leave-one-stimulus-pair-out 

cross-validation.  

For hIT, the animate/inanimate and face/body dichotomies could be decoded with significant 

accuracy with most classifiers (using either cross-validation method). For the natural/artificial dichotomy, 

significant hIT decoding accuracies were only found using the leave-one-stimulus-pair-out cross-

validation and only in some subjects for the best-performing classifiers. 

The size of the ROI did not appear to have a big effect on decoding accuracy overall (Fig. 6), 

despite the fact that the largest ROI was an order of magnitude larger than the smallest ROI (about 22 

times larger for EVC and about 10 times larger for hIT). This suggests (a) that our selection of voxels 

according to their visual responsiveness tended to catch voxels with much discriminative information 

even for the smallest ROIs, (b) that the additional voxels in the larger ROIs did not add much 

independent information, and (c) that the most classifiers managed to downweight any noise voxels 

added in the larger ROIs. Only the nearest-neighbor and nonlinear classifiers (KNN, Cor, SVM-RBF) 

showed some evidence of a drop in accuracy for the largest ROIs for EVC, suggesting a tendency to 

overfit the data. A similar trend was observed for GNB. The vulnerability of GNB and KNN to overfitting 

for high-dimensional patterns was noted in Mitchell (1997). 

 

The effect of pattern normalizations on decoding performance 

Pattern normalization provides a simple way to abstract from variability deemed irrelevant, such 

as the spatial-mean level and the variability of activity across voxels or stimuli. The effect on decoding 

accuracy of pattern normalization depends on the relative amounts of decodable discriminatory 

information and noise present in the variability removed by a given normalization. 
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We used the t-value patterns as the basis for comparing different normalizations. Fig. 7 shows 

the results averaged across ROI sizes, category definitions, and subjects. Though the figure shows 

average results, statistical analysis was performed for each of ROI size, category definition, and subject 

separately. 

We found no evidence for effects of normalization of t-value patterns on the decoding accuracy of 

any classifier. Accuracies appeared equal for the original t-value patterns and for the patterns 

normalized to equalize either the mean or the mean and the variability, either across voxels or across 

stimuli (see Methods for a detailed description). 

  

Discussion 

Linear classifiers performed best 

Overall, the linear classifiers performed better than the nonlinear classifiers. This could mean that 

the true distributions’ Bayes-optimal decision boundaries were approximately linear or that the amount of 

data available for each subject was insufficient for the nonlinear classifiers to capitalize on their ability to 

model a nonlinear optimal decision boundary, or a combination of these two possibilities. The amount of 

data used per subject corresponded to about one hour of fMRI acquisition. It appears that linear 

classifiers have an appropriate model complexity in this scenario. 

The pattern-correlation classifier performed better overall than the more complex nonlinear 

classifiers. It is attractive for its simplicity and straightforward interpretation in terms of pattern similarity. 

Moreover, it is rapid to train (time complexity linear in the number of voxels and training patterns), faster 

than the Fisher discriminant (which requires estimation and inversion of a voxel-by-voxel covariance 

matrix) and much faster than the linear SVM (which requires within-training-set cross-validation). 

However, LDA and the linear SVM appeared to perform slightly better than the pattern-correlation 

classifier. 

 

LDA with optimal-shrinkage covariance estimate: excellent performance and fast 
to compute  

Why does LDA perform well? The excellent performance of LDA suggests that equal-covariance 

multinormals provide a reasonable approximate model of the pattern-estimate distributions for the two 

classes. This is consistent with widespread assumptions in univariate fMRI analysis, namely that the 

noise is (univariate) normal and homoscedastic (i.e. the same across experimental conditions). In 

addition, time courses of close-by voxels are known to be correlated (e.g. Kriegeskorte et al., 2008b). 

The model implicit to LDA would be optimal if each stimulus class were associated with a prototypical 

response pattern whose estimates are corrupted by homoscedastic Gaussian noise correlated between 
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pairs of voxels. In reality, within-class variability is unlikely to arise only from measurement noise. 

Instead, each stimulus within a class may elicit a unique response pattern and their distribution may not 

be multinormal. But a multinormal model may provide a reasonable approximation. 

Advantages over linear SVM. LDA appears as an attractive alternative to the linear SVMs 

because it less computationally costly and conceptually simpler (choosing the discriminant dimension 

that maximizes the ratio of between- and within-class variance). The lower computational cost makes it 

suitable for information-based brain mapping with a searchlight (Kriegeskorte et al., 2006) and other 

computationally intensive multivariate feature selection methods. (The even simpler and faster pattern-

correlation classifier is also attractive for these applications.) 

In most fMRI scenarios, training will take much less computation for LDA than for a linear SVM 

because LDA doesn’t require parameter optimization with grid-search and second-level cross-validation 

within the training data. But when the dimensionality of the data is very large (thousands of ROI voxels), 

the covariance-matrix estimation and inversion required for LDA become very computationally intensive, 

and the two classifiers become comparable in computational cost. 

Getting a stable and invertible covariance estimate. Our choice of using the optimal-shrinkage 

covariance estimator (Ledoit and Wolf, 2003) probably contributed to LDA’s good and robust 

performance. Ledoit and Wolf (2003) showed that the optimal-shrinkage covariance estimator works 

better than PCA dimension reduction in a stock market analysis. This would explain the discrepancy with 

a previous study (Mourao-Miranda, 2005), which suggested that SVM performs significantly better than 

LDA: these authors analyzed whole-brain data and used PCA for dimensionality reduction before LDA. 

The optimal-shrinkage covariance estimator is key for two reasons: (a) It stabilizes the covariance 

estimate, which is expected to improve decoding accuracy and robustness in cases when there are 

more voxels and/or less training patterns. (b) It ensures that the covariance matrix is invertible, avoiding 

the singularity problem that disqualified LDA in Cox et al. (2003) for larger ROIs. 

The optimal-shrinkage estimate approaches a diagonal covariance matrix as the dimensionality 

of the data tends to infinity. So in a very high-dimensional case, LDA with the optimal-shrinkage 

covariance estimate is similar to pooled-variance GNB. However, for the present scenarios, the optimal-

shrinkage estimate still had many substantially non-zero off-diagonal elements, even for the largest ROI 

size. The ability to model voxel correlations, which are known to be substantial in fMRI (e.g. Kriegeskorte 

et al., 2008b), may explain why LDA outperformed GNB. (Note that we used GNB with class-distinct 

variances for the comparison here; pooled-variance GNB performed almost identically as distinct-

variance GNB in the present case.) 

Even using optimal-shrinkage estimation, it is desirable to obtain enough training patterns to get 

a good covariance estimate. Here we used a condition-rich (Kriegeskorte et al., 2008c) event-related 

design, providing more pattern estimates for each class than a typical block design. When only few 

repetitions are available for each class, we can use a single predictor in the design matrix to model the 

class-mean response amplitude, such that within-class variance is treated as error variance in the initial 
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linear model for response estimation. We can then estimate the covariance matrix from the error time 

courses of the fitting of the linear hemodynamic response model to each voxel’s time course 

(Kriegeskorte et al., 2007b; see also Kriegeskorte 2004; Kriegeskorte et al., 2006). We now have as 

many samples as there are time points for covariance estimation. 

The temporal autocorrelation of the errors decreases the effective number of independent time 

points that determine the covariance estimate. However, using the error time courses exploits whatever 

temporal complexity fMRI data do provide. The effective number of independent dimensions is larger 

than for block-average or even single-trial response estimates. Moreover, this approach can handle 

rapid event-related designs (with overlapping hemodynamic responses to successive events), utilizing a 

prior model of the shape of the hemodynamic response (e.g. Boynton et al., 1996) for optimal estimation 

of the average response amplitudes for sets of trials corresponding to experimental conditions. 

The orientation and shape of the multinormal distribution of the pattern estimates is accurately 

characterized by the covariance of the errors (Krzanowski, 1988). The design matrix and condition 

merely determine the scaling of the covariance of the distribution (e.g. smaller when more data are 

averaged in estimating a pattern).  

Estimating within-class covariance from the errors of the linear-model fit is ideal, when within-

class variation is dominated by fMRI measurement noise (which is homoscedastic and characterized by 

voxel correlations). For the present data set, within-class covariance was also due to different particular 

images within each category. Nevertheless, covariance estimation from the patterns or from the error 

time courses yielded equal performance of LDA (comparison not shown, results are for covariance 

estimation from the single-image response patterns). For experiments with fewer trials and for block 

designs, it may be preferable to estimate the covariance matrix from the errors. In either case, we expect 

the optimal-shrinkage estimator to further improve the covariance estimate, and with it classification 

performance and sensitivity to pattern information. 

 

Linear SVM: excellent performance with error-normalized voxel responses 

Linear SVM classification performed excellently and robustly across scenarios. However, the 

linear SVM was affected by the choice of response-pattern estimate. Using t-values to define the 

patterns yielded better performance (equivalent to LDA) than using beta estimates. Using t-values 

means that the response amplitudes are expressed in units of standard errors of the estimates. We 

could equivalently have expressed the response amplitudes in error standard-deviation units. (Error 

standard-deviation units are essentially equivalent here, because the t-values just have an additional 

factor in the denominator, which is very similar across conditions, because every condition had the same 

amount of data, and differences arise only from predictor correlations resulting from the rapid event-

related stimulus sequence, which were small here.) Either method scales each voxel’s responses to an 

equal noise level. 

Linear SVMs are sensitive to the scaling of the input dimensions, because the decision 

hyperplane is not simply scaled along with the data points, but can reorient as it finds the new maximum-
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margin configuration (e.g. exploiting stretched dimensions to maximize the margin). It has been 

suggested previously (Schölkopf and Smola, 2001) that SVMs perform better on inputs scaled to have 

roughly the same magnitude. The t-values, here, had more similar magnitudes across voxels than the 

beta values. 

 Significant improvements with t-value patterns were also observed for SVM-RBF as well as for 

Cor and KNN. For these methods, a plausible explanation for the improvement is the downweighting of 

noisy voxels. 

LDA and GNB were not significantly affected by the difference between beta- and t-values. 

This is unsurprising because the decision boundary in these methods is just stretched or squeezed 

along with the data points (i.e. the patterns) when dimensions are scaled, rendering these methods 

invariant to differential scaling of dimensions (assuming maximum-likelihood fits of the Gaussians for the 

moment). LDA and GNB take each voxel’s response variance into account automatically via the diagonal 

entries of the covariance matrix. (Slight subsignificant differences between these classifiers’ accuracies 

for beta estimate and t patterns were nevertheless observed, because slightly different standard errors in 

the same voxel for different conditions (due to weak predictor correlations) apply slightly different 

scalings to each pattern (i.e. condition) for a given dimension (i.e. voxel). Moreover, the optimal-

shrinkage estimator deviates from the maximum-likelihood estimate, shrinking the sample covariance 

toward a diagonal covariance estimate. Because of these aberrations, LDA here was not precisely 

invariant to differential scaling of dimensions.) 

Advantages of linear SVM over LDA. We may prefer a linear SVM over LDA when we expect the 

optimal decision boundary to be approximately hyperplanar, but do not expect LDA’s assumption of 

equal and multinormal pattern distributions to be a good approximation. Although SVM is typically more 

computationally costly than LDA, the latter method’s covariance estimation and inversion becomes 

costly as well for large ROIs (thousands of voxels). 

 

Nonlinear classifiers may require more data 

Nonlinear classifiers, overall, did not perform as well as their linear counterparts. This is 

consistent with previous studies comparing linear and nonlinear variants of SVM for fMRI data (Cox and 

Savoy, 2003; LaConte et al., 2005). SVM-RBF performed acceptably, but significantly worse than SVM-

lin, and is more computationally expensive and more difficult to interpret. The low performance of KNN 

similarly suggested that nonlinear classifiers may not be ideal for fMRI classification unless we have 

either fewer voxels in the pattern or more data. Dimensionality reduction of the input patterns may also 

help improve the performance of nonlinear classifiers. 

 

Interpretation of linear decodability as “explicit” coding  

In addition to the stability of linear models (conferring greater sensitivity to linearly encoded information), 

linear classification results are easier to interpret. Linearly decodable information can be thought of as 
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‘explicit’ in the sense of being amenable to biologically plausible readout in a single step (e.g. by a single 

unit receiving the pattern as input). Note that this notion of “explicit” coding is much wider than that of 

single-cell explicit coding (which it includes as a special case: the case where the pattern differences are 

concentrated in a single unit or in a small subset of units). Linearly decodable information is directly 

available information, an obviously important property to analyze for when our goal is to characterize the 

function of a region from a computational perspective. 

As an example of pattern information that is not linearly decodable, consider the object-category 

information in our retinal activity patterns. Object-category information is certainly present in the retina, 

otherwise we could not categorize visually perceived objects. However, to decode it from retinal data 

would require a complex nonlinear analysis (the one we usually refer to as object recognition). Because 

the space of possible nonlinear decoders is very large, we would have no hope of finding a good readout 

model (and thus to detect the nonlinearly encoded information) even if we had extensive retinal 

response data. Beyond the statistical challenge, finding the object-category information would also not 

necessarily help us understand the function of retinal processing. Arguably, knowing what information is 

linearly decodable provides stronger constraints for computational theory than knowing what information 

is present (in an arbitrarily complex nonlinear encoding).  

Linear decoding results are also inherently easier to characterize in terms of the contributing 

units. For example, we can simply inspect the map of weights defining the discriminant dimension (e.g. 

Mourao-Miranda et al., 2005). For nonlinear classifiers, voxel interactions come into play and a map of 

independent voxel contributions cannot capture the complexity. 

Although linear models are statistically stable and key to characterizing the information available 

for direct readout, our larger goal is to develop computational models of brain-information processing 

and to constrain these models with brain-activity data (e.g. Kay et al., 2008; Kriegeskorte et al., 2008b,c; 

Mitchell et al., 2008). These models will necessarily be nonlinear (as the brain itself) and will require 

much larger amounts of data to constrain them, as might be cumulatively acquired by the community 

over many years. 

 

Cross-validation: testing generalization to new runs or new stimuli 

In the leave-one-run-out cross-validation, training and test set corresponded to separate runs, but 

responses to the same stimuli were present in both sets. In the leave-one-stimulus-pair-out cross-

validation, training and test set corresponded to separate sets of stimuli, but responses from the same 

run were present in both sets. (The ROI was always defined by a completely separate data set.) 

Comparing decoding accuracies between the two cross-validation methods suggested that 

generalization to new runs is more difficult than generalization to new stimuli within the same class. This 

result is consistent with the notion that run-related changes reflecting scanner state and head motion are 

substantially larger than activity-pattern effects. 
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The results of the leave-one-stimulus-pair-out cross-validation should be interpreted with caution, 

because the training and test data were not entirely independent as they were taken from the same runs 

and reflect temporally overlapping hemodynamic responses. Because the stimulus sequences were 

random, the effect of this subtle dependency between training and test data is not obvious here and 

should not favor correct over incorrect classification. Nevertheless strong conclusions should not rest on 

analyses where the independence of training and test data is violated. The leave-one-run-out cross-

validation therefore appears a safer choice, ensuring that the false-positives rate is controlled at the 

nominal level. 

There are technical and conceptual reasons why accuracies estimated with these methods 

cannot be directly compared. At the technical level, the leave-one-run-out cross-validation had fewer 

folds and, on each fold, used slightly less training data (in terms of fMRI volumes), a slightly larger 

number of the training patterns, and a much larger number of the test patterns than the leave-one-

stimulus-pair-out cross-validation. More importantly, however, the two methods test for different types of 

generalization performance, so this is not just a technical, but a conceptual choice, which affects the 

interpretation of the results. If generalization to different stimuli within the same category is to be tested, 

the different stimulus sets should ideally be presented in separate runs. 

 

Selection of fewer more visually responsive voxels improved decoding 
performance 

Selecting fewer voxels tended to improve decoding accuracy in many cases. This is consistent 

with results reported by Mitchell et al. (2004). More visually responsive voxels may be less noisy. Note 

that voxels that are more visually responsive on average could, in theory, also be worse discriminators of 

different stimulus categories. However, our results suggest that more visually responsive voxels also 

carry more information for distinguishing the categories. The classification accuracies of Cor and KNN 

degraded for larger ROI sizes. These methods appear susceptible to the inclusion of noisy voxels. The 

performance of LDA and the SVMs appeared robust to changes of ROI size. 

 

Pattern normalizations had little effect on decoding performance 

Normalizing mean and standard deviation of the response patterns either across stimuli or across 

voxels before training and testing had no significant effect on decoding performance. The popular 

pattern-correlation classifier (Haxby et al. 2001) implicitly normalizes each pattern by subtracting out the 

spatial-mean and dividing by the spatial standard deviation. Our pattern normalization across voxels was 

similar, but applied to the response pattern for each stimulus, whereas in the pattern-correlation 

classifier it is applied to each category-average pattern. The absence of a significant performance 

reduction of these pattern normalizations suggests that they do not substantially affect the ratio between 

the category signal and the noise. This appears plausible if we consider the fact that across-voxel 

normalizations merely reduce the high dimensionality of the patterns by two dimensions in the voxels’ 
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response space as shown in Fig. 2b. Since the response space has hundreds of dimensions (i.e. ROI 

voxels), the loss of information will be small, unless the information is concentrated in the dimensions 

that are removed (e.g. in the spatial-mean activation of the ROI). 

 

Limitations of this study 

We systematically varied a number of choices in designing a pattern classifier analysis (classifier, 

response estimate, pattern-normalization, cross-validation method) and tested these choices in different 

scenarios (different ROIs, different ROI sizes, different category dichotomies). Results suggested a 

robust superiority of linear classifiers for fMRI decoding. However, it is important to note that these 

results were obtained for human visual object representations measured with 3T fMRI (voxels 1.95 x 

1.95 x 2 mm3) in four subjects. We used about 1 hour of fMRI data per subject here. Nonlinear methods 

may work better when more data are available for training or when dimensionality reduction is applied to 

the patterns. To what extent our findings will generalize to different perceptual, cognitive, and motor 

regions, to other experimental tasks, and to different fMRI acquisition schemes cannot be predicted. 

 

Conclusion 

Overall our results suggest that linear classifiers perform best and that defining the patterns in 

error-standard-deviation units (or using t-values) improves performance of the pattern-correlation, KNN, 

and SVM classifiers. With suitable data preprocessing, different methods often perform similarly, 

although the nonlinear methods GNB and KNN performed significantly worse. In particular, LDA used in 

conjunction with an optimal-shrinkage covariance estimator is attractive for its simplicity, interpretability, 

computational speed, and robust good performance. To ensure control of the false-positives rate, both 

voxel selection and classifier training should be based on data independent from that used for testing 

(Kriegeskorte et al, 2009). This is ensured by using separate sets of scanner runs. 

Pattern-classifier analysis requires many decisions (Pereira et al., 2009). The ideal choices will 

depend on the stimulus, task, brain region, and the amount of data available. However, any of the six 

classifiers provides a valid test of pattern information and, across scenarios, we found almost no 

significant differences in accuracy (and thus sensitivity to pattern information) between the two classifiers 

performing best here (LDA and linear SVM). 
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Table 1: Comparison of the six classifiers (as implemented here) 

 

 

 

Table 2: Effect of different response-pattern normalizations 

Geometric 
intuition 

for... 

Normalization 
type 

Subtract mean 
Subtract mean and 

divide by s.d. 

(1) across 
stimuli 

Pattern shape changed. 

Pattern shape changed: 
Voxels of high variance 
across stimuli are 
downscaled. response 

pattern for 
each 

stimulus 
(2) across 

voxels 

Pattern shape preserved, but 
mean-level shifted: spatial-
mean response is 0 for all 
stimuli. 

Pattern shape preserved, but 
shifted and scaled: spatial-
mean response and 
variability across voxels is 
equal for all stimuli. 

(1) across 
stimuli 

Distribution is centered on 
the origin in each dimension. 

Distribution is centered on 
the origin and scaled to unit 
standard-deviation in each 
dimension. sample 

distribution 
in voxels’ 
response 

space (2) across 
voxels 

Distribution projected onto a 
hyperplane: the 
dimensionality of the sample 
distribution is reduced by 1 
as samples are projected 
onto the hyperplane 
orthogonal to the all-1 vector. 

Distribution projected onto a 
hypersphere within the 
hyperplane: the 
dimensionality of the sample 
distribution is reduced by 2 
as samples are projected 
onto a centered hypersphere 
within the hyperplane. 
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Figure 1: Different pattern classifiers use different decision boundaries. Hypothetical example of classification 
by different classifiers. Each classifier determines a different decision boundary on the basis of a set of training 
patterns (red and blue circles). As a result, test patterns in the ambiguous territory between the two clusters (red 
and blue triangles) will be classified differently by the different classifiers. The color of the triangles indicates which 
class it is classified as. The large circles, where present, are the class centroids (i.e. class-average patterns). The 
dotted ellipsoids (for GNB and LDA) are iso-probability-density contours of the fitted Gaussian distributions. For the 
SVMs, the dotted lines represent the margin around the decision boundary and the bold-edged circles are the 
support vectors defining the boundary. 
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Figure 2: Pattern normalization can be performed across voxels or across stimuli. This figure illustrates how 
the different normalizations change response patterns. The plotted data are hypothetical. (a) Each panel shows 
response amplitudes of four voxels (v1, v2, v3, v4) for each of three stimuli (A, B, and C). The left panel shows the 
raw response. The upper row shows the normalization across stimuli for each voxel. This normalization changes 
the response pattern across voxels but preserves relative response differences between stimuli in each voxel. The 
lower row shows the normalization across voxels in each stimulus. This normalization preserves the shape of the 
response pattern across voxels for each stimulus but changes relative response differences between stimuli in 
each voxel. (b) Each panel shows the distributions of the response patterns for two classes (solid red circles and 
open blue circles) in the voxels’ response space. The left panel shows the raw response-pattern distributions. The 
upper row shows the normalization across stimuli for each voxel. This normalization shifts and scales the 
distributions in the response space. Note the shift of the origin of the axes. The lower row shows the normalization 
across voxels for each stimulus. This normalization projects the points onto a hyperplane by subtracting the mean, 
and then onto a hypersphere within that hyperplane by dividing by the standard deviation. Note that removing 2 
dimensions in this 3-dimensional cartoon example leaves only one dimension (i.e. the circle in the plane) for the 
patterns to vary along. For high-dimensional response patterns (d dimensions), however, the hypersphere will have 
similar dimensionality (d-2) as the original space, and the loss of information may be small. 
 

 28



 
 
Figure 3: Defining the response patterns by t-values instead of beta estimates yielded better or equal 
decoding accuracy. The bars show the difference of classification accuracy between patterns defined by t-values 
and patterns defined by beta estimates. Positive values (upward bars) mean that t-values gave better classification 
accuracy than beta estimates. Error bars show the standard error of the mean across subjects. The statistical 
analysis (paired t test across stimuli) was performed for each subject separately and an asterisk indicates a 
significant difference (p < 0.05) in at least two of four subjects. S, M, and L indicate the small, middle and large ROI 
size, respectively. The numbers of voxels in S, M, L were 224, 1057, 5000 for EVC, and 316, 1000, 3162, for hIT. 
Significant differences were only seen in favor of t-values. LDA and GNB were not significantly affected by the 
difference of response estimates because they model and thus correct for the variance along each response 
dimension (see Discussion for details). 
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Figure 4: Linear classifiers performed best and not significantly differently (leave-one-run-out cross-
validation). Classification accuracies estimated with leave-one-run-out cross-validation for each classification 
method for (a) EVC ROI and (b) hIT ROI. The voxels in ROI were selected by visual responsiveness assessed 
using the average response for the 96 stimuli (t-value) in a separate experiment. Response patterns were defined 
by t-values. Accuracies are averages across subjects and stimuli. Error bars show the standard error of the mean 
across subjects. Classifiers were ordered by their mean classification accuracies. Chance-level accuracy was 50% 
(solid line). The upper dashed line indicates the significance threshold for better-than-chance decoding (indicating 
the presence of pattern information). For a single-subject accuracy exceeding the significance line, p < 0.05 (not 
corrected for multiple tests) for a binomial test with 96 trials for Animate/Inanimate, and 48 for Face/Body and 
Natural/Artificial (H0: chance-level decoding). The horizontal connection lines above the bars indicate significant 
differences between classifiers (p < 0.05 with Bonferroni correction for the 15 pairwise comparisons of the 6 
classifiers) seen in at least two of four subjects (paired t test across stimuli). With this procedure, a horizontal 
connection indicates a significant difference of decoding accuracy between two classifiers at p<0.036, corrected for 
the multiple tests across pairs of classifiers, across subjects, and across all scenarios (region, ROI size, category 
dichotomy, and cross-validation method) of Figs. 4 and 5 combined (see Results for details). LDA and SVM-lin 
tended to perform best and not significantly differently. 
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Figure 5: Linear classifiers performed best and not significantly differently (leave-one-stimulus-pair-out 
cross-validation). Classification accuracies estimated with leave-one-stimulus-pair-out cross-validation for each 
classification method for (a) EVC ROI and (b) hIT ROI. All conventions as in Fig. 4. 
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Figure 6: Accuracy was not strongly dependent on ROI size for most classifiers, but dropped for large 
ROIs in Cor and KNN. This figure compares decoding accuracies across ROI sizes for each classifier. 
Classification accuracies were rarely significantly affected by changes of ROI size (horizontal connections between 
bars). The accuracy of Cor and KNN decreased for larger early visual ROIs, suggesting overfitting. Results are 
presented separately for each brain region and cross-validation method. Accuracies are averaged across the three 
category dichotomies (animate/inanimate, face/body, natural/artificial) and across subjects. Error bars show the 
standard error of the mean across subjects. The horizontal connection lines above the bars indicate significant 
differences between classifiers (p < 0.05 with Bonferroni correction) seen in at least two of four subjects (paired t 
test across stimuli).  
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Figure 7: Normalization of response patterns across stimuli or across voxels had no significant effect on 
classification accuracy. Mean classification accuracies for raw patterns of t-values and for normalized patterns. 
Patterns were initially defined by t-values (red bars). Error bars show the standard error of the mean across 
subjects. The left-column panels show across-stimuli normalizations: the patterns were normalized by subtracting 
the mean across stimuli (green bars) and then additionally dividing by the standard deviation across stimuli for 
each voxel (blue bars). The right-column panels show across-voxels normalizations: the data were normalized by 
subtracting the mean across voxels (green bars) and then additionally dividing by the standard deviation across 
voxels for each stimulus (blue bars). Results are shown separately for leave-one-run-out cross-validation (a) and 
leave-one-stimulus-pair-out cross-validation (b), but averaged across ROIs, ROI sizes, category dichotomies, and 
subjects. The statistical analysis was performed separately for each ROI, ROI size, category dichotomy, and 
subject. We found no significant effects of the four different pattern normalizations (paired t tests across stimuli, p < 
0.05, Bonferroni-corrected, in at least two of four subjects). 
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