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Figure S1. Related to Figure 1

(A) Unigueness point (UP), Deviation point (DP), and duration distributions of the spoken words used
in this experiment. The distribution of these time lags shows that more than 85 % of our items have
a UP-to-DP delay of less than 400 ms, indicating that competition from a consolidated spoken word
should be most apparent within a -400 ms to 0 ms time window (0 ms being the DP; see Figure 2A).
However, given known delays in cortical transmission of sensory information of approximately
100ms (i.e. when one typically observes the first significant peak evoked response in auditory cortex,
Davis and Zerlin, 1966), we shifted this pre-DP time-widow of interest to -300 to 100 ms.
Furthermore, we only included in the UP-locked analyses items with UP-to-DP delays greater than
100 ms in order to not include any post-DP effect (note, however, that the results were essentially
the same when all items were included).

(B) Computational simulations of lexical ignition. The impact of an additional lexical candidate
("#$%&" on the recognition time-course of the familiar word !"#$%'( /fO:mjul@/, plotted as for
Figure 1C/D. Experimental predictions for neural correlates for pre-DP and post-DP responses the 6
critical conditions in our experiment, plotted as in Figure 1E/F.
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Figure S2. Related to Figure 3

(A) Time-course plots of significant RMS-gradiometers sensors (marked by a cross in the scalp
topography) for the )*+,-(',./0*!1*-.0 in the Untrained condition. Statistical parametric map showing
the )*+,-(',./0*!I'*-, in the Untrained condition rendered onto an inflated cortical surface of a
standard brain in MNI space (thresholded at voxelwise P_ycorrected < -001 for purposes of illustration).

(B) Magnetometers Global Field Power (GFP; i.e. RMS across all sensors) averaged over the pre-DP
time-window (UP-locked epochs) and the post-DP time-window (DP-locked epochs) for the Trained
Day 1 (blue line), Trained Day 2 (red line) and Untrained (green line) conditions. Error bars show +/-
within-participant standard error.

(C) Magnetometer and RMS-gradiometer topographies for simple effects composing the interactions
of interest shown in Figure 3. Significant effects in Sensor -Time analyses are marked by an asterisk.

(D) Statistical parametric map of the source reconstruction based on the combined gradiometer and
magnetometer data (Henson et al., 2009) showing the expected pattern of prediction error post-DP
(see Supplemental Experimental Procedure, Section B.4.4) rendered onto a standard brain in MNI
space (thresholded at voxelwise P_yncorrected < -001 for purposes of illustration).
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Figure S3. Related to Figure 4

(A) Simulated MEG response as computed by the neural instantiation of temporal predictive
account. The three plots represent the prediction error (i.e. the mean sum of absolute activity in the
segment layer) averaged over all the items in the item set, for (A) the time-course of recognition of a
Source word (e.g.0"#3$%'() relative to the deviation point segment (DP) as a function of whether a
new competitor is learned on Day 1 (blue line) or on Day 2 (red line).

(B) Prediction error averaged over the pre-DP segments for Source, Novel and Baseline item.

(C) Post-DP prediction error plotted as in (B). See also Figure 1E/F for comparison.



Supplemental Results
Magnetometer Global Filed Power (GFP)
Pre-DP Analyses

The GFP for the magnetometers showed no reliable differences [Z = -1.34, P = .18] between trained
Day 1 vs. trained Day 2 conditions when averaged over the pre-DP time-window of interest (-300 ms
to 100 ms; see Supplemental Experimental Procedure, Section B.4.4, and Figure S1). In fact, if
anything, there was a numerical trend in the opposite direction to that predicted by lexical entropy
accounts, i.e., greater GFP for trained Day 2 vs. trained Day 1 conditions.

Careful inspection of the segment prediction simulations show that phonemic predictions
prior to DP are most clearly modified at the original UP (i.e. the /j/ of "#3$%'() and may explain this
tendency for decreased pre-DP responses with consolidation. To confirm this prediction, we ran a
further analysis of the pre-DP data, using epochs time-locked to the UP (i.e. post-UP analysis). If as
shown in the simulations that the small decrease in pre-DP prediction-error is locked to the UP then
we should now observe this effect 100 ms after the actual UP (taking into account the auditory
delay; see Supplemental Experimental Procedure, Section B.4.4). Analysis of the magnetometers GFP
indeed showed a reliable decrease for trained Day 1 vs. trained Day 2 conditions when averaged
over 100 ms to 200 ms (to exclude any post-DP effect) after the UP ([Z = -2.35, P < .05]; see Figure
S2). Note that once again to exclude any post-DP effect, this analysis was performed only on items
with a UP-to-DP delay greater than 100 ms (see Figure S1).

Post-DP Analyses

In this section, we assess the predicted neural profile of prediction error using two interactions
described in Figure 1F: (1) the )*+,-(',./ 1&/12(/0,3.*#(-.,"30and (2) the 4"5*'./ ®&/12(/0,3.*#(-.,"3 .
The )*+,-(',./ 1&/12(/0,3.*#(-.,"3 [(Source word Day 1 - Novel word Day 1) — (Source word Day 2 -
Novel word Day 2)] was significant in the magnetometers GFP averaged over the post-DP time-
window of interest (see Supplemental Experimental Procedure, Section B.4.4, and Figure S2) [Z =
2.52, P < .05]. To confirm that this interaction was driven by lack of consolidation of Novel trained
Day 2 items, simple effects of )*+,-(,./ were tested separately on the GFP for Day 1 and Day 2
conditions. The )*+,-(",./0*!!*-.  (Novel vs Source items) in the Day 2 conditions was significant [Z = -
3.32, P <.001], but failed to reach significance in the Day 1 condition [Z=-1.1, P =.22].

The 4"5*.] 1&/12(/0,3.*#(-.,"3 [(Novel word Day 1- Baseline word Day 1) — (Novel word Day 2-
Baseline word Day 2)] was significant in the magnetometers GFP average averaged over the post-DP
time-window of interest ([Z = -2.94, P < .005]; Figure S2). To confirm that this interaction was driven
by consolidation of the Novel trained Day 1 items, simple effects of 4"5*./0 were tested separately
in the GFP for Day 1 and Day 2 conditions. The 4"5*./0 *!II*-.0 (Novel vs. Baseline items) was
significant in the Day 1 conditions [Z = -3.28, P < .001] but not in the Day 2 condition [Z =-0.76, P =
A4].

The presence of these two interactions provides evidence that training and overnight
consolidation but not training alone led to the lexicalisation of the novel spoken words in the Day 1
condition. The direction of these interactions was exactly as expected by an account of spoken word
recognition in which neural responses to incoming segments reflect prediction error. We observed a
marginal trend for the expected increase in magnetometers GFP for Day 1 Source words relative to
Day 2 Source words [Z = -1.67, P = .09]. Moreover, we also observed the expected decrease for
Novel word Day 1 relative to Novel word Day 2 [Z = 2.3, P < .05]. However, we again saw the same
unexpected differences for Baseline items characterised by greater GFP for Day 1 than Day 2
conditions [Z =-2.64, P < .01] that we observed for gradiometers (see Figure 3B and Figure S2B).



Additional Sensor-Time Analyses
Pre-DP analyses

Results of the Sensor-Time analyses of the DP-locked epochs showed a reliable difference for the
trained Day 1 conditionGn magnetometer ERF (P-corrected < .05) suggesting that MEG effects were
localised to a few sensors and hence attenuated when data was combined over sensors in the GFP.
However, this pre-DP difference between Day 1 and Day 2 items failed to show a reliable difference
for RMS-Gradiometers as mentioned in the main text (P-corrected = .13). Similar findings were found
pre-DP for Sensors-Time analyses performed on UP-locked epochs. A marginal difference was
observed between Day 1 and Day 2 for ERF magnetometers (P-corrected = .09) while this effect
failed to reach significance for ERF RMS-gradiometers (P-corrected = .15).

Post-DP Analyses

The )*+,-(",./ 1&/122(/0 ,3.*#(-.,"3 failed to survive correction in the Sensor-Time analysis of the
magnetometers data (P-corrected = .15) though it was significant for RMS-gradiometers from 280
ms to 350 ms as reported in the main text (P-corrected < .05). A significant )*+,-(,./0*!!*-. in the
Day 2 condition was observed for both magnetometers from 100 ms to 500 ms (P-corrected < .001)
and RMS-gradiometers from 120 ms to 370 ms (P-corrected < .001). Despite the presence of a
significant )*+,-(',./ 1&/12(/0,3.*#(-.,"3 , we also observed in these Sensor-Time analyses a residual
)*+,-(',./0 *I'*- 0 in the Day 1 condition from 100 ms to 300 ms for magnetometers and RMS-
gradiometers (P-corrected < .05). This residual )*+,-(',./0*!I*-, for items trained on Day 1 condition
reflects a difference between words learned on the previous day and words in participants’ long
term vocabulary; this might be attributed to the lack of conceptual or semantic information and/or
that these items are not of equivalent frequency or familiarity as the corresponding source words.

We also observed a significant 4"5*'./ 1&/12(/ Q3.*#(-.,"3 from 100 ms to 500 ms for both
magnetometers (P-corrected < .001) and RMS-gradiometers (P-corrected < .001). The expected
4"5* [0*11*- 0 was present in the Day 1 condition from 100 ms to 500 ms for both magnetometers
(P-corrected < .001) and RMS-gradiometers (P-corrected < .001). However, a significant 4"5*"./0
*11*- Owas also observed for Day 2 items (not significant in the GFP analyses) from 220 ms to 500 ms
for magnetometers ERF (P-corrected < .001). Such effect was not reliable for RMS-gradiometers (P-
corrected = .22). As it can be seen from the gradiometers GFP reported in Figure 3B, this effect goes
in the reverse direction of the 4"5*'./0*!1*-. in the Day 1 condition. This might reflect an influence of
recent learning on post-DP responses that was not expected such as inhibition or interference
between trained Novel words and nonword Baseline items.

Finally, we also compared trained Day 1 and trained Day 2 conditions for each condition
separately (i.e. Source, Novel and Baseline words). Regarding Source words, Sensor-Time analyses
showed no significant difference for both magnetometers (P-corrected = .6) and RMS-gradiometers
(P-corrected = .15). The Day of training effect was significant for Novel words for magnetometers
from 250 ms to 500 ms (P-corrected < .05) and for RMS-gradiometers from 260 ms to 330 ms (P-
corrected < .05). Lastly, Baseline items were also associated with an unexpected significant
difference for both magnetometers (P-corrected < .001) and RMS-gradiometers (P-corrected < .001)
from 100 ms to 500 ms. The topography and significance (in Sensor-time analyses) of these effects
are shown in Figure S2.
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Supplemental Experimental Procedure
Distinguishing Lexical Competition and Segment Prediction

We use an artificial word learning method to distinguish two different computational mechanisms
that have been proposed to be key to the rapid and efficient recognition of spoken words.
Specifically, we contrast computations of lexical competition (quantified using a lexical entropy
measure), and segment prediction (quantified as the discrepancy between heard and lexically
expected segments in speech). The two computational measures are reported in detail in the
Computational Simulations section of the main manuscript. Neural correlates of these two
computations are difficult to distinguish for natural language stimuli since segmental and lexical
uncertainty change in parallel during perception of spoken words. One illustration of this is that for
the set of 216 source words used in the experiment, the segment-by-segment correlation between
lexical entropy and segment prediction error is extremely high (r= 0.602, P<.001). It would be
difficult to distinguish such highly related computational signals even if these segment-by-segment
measures could be easily aligned to the speech signal for each spoken word. These two measures
remain correlated when they are averaged over the entirety of a spoken word (r= 0.473, P<.001) and
so it might also be difficult to distinguish between these measures using measures like fMRI which
record an aggregate neural responses for an entire spoken word.

However, by manipulating the set of spoken words that participants know at the time of
testing (through training on artificial vocabulary items) we can create stretches of speech during a
spoken word when these two computational measures make opposite predictions —i.e. situations in
which lexical uncertainty is high but segment prediction error is low and vice-versa.

Lexical entropy quantifies the degree of lexical uncertainty at specific points in a speech
sequence. All other things being equal, lexical entropy will be maximal at word onset (when the
entire lexicon is partially activated) and then declines over time as fewer words match the speech
signal. When only a single lexical item remains, its conditional probability will be one and lexical
entropy will be zero. Similarly, when a pseudoword is presented, an ideal observer model will rule
out all known words and lexical entropy will again be zero. In order to compute the conditional
probability and lexical entropy for novel words that have been integrated into the lexicon after
consolidation (trained Day 1 condition), we need to supply a phonological transcription for our
recordings, and assign them a frequency of occurrence. This frequency value is a direct measure of
how well-learned the novel words are by comparison with real words which have a frequency of
occurrence based on corpus counts, and may influence the quantitative scaling of the computed
effect. For this purpose, we assume that novel words learned on Day 1 have a frequency equivalent
to the frequency of the 216 source words in the experimental item set.

Segment prediction error quantifies the mismatch between segment conditional probability
(again computed using word frequency and phonological transcriptions) and the observed
probability of the speech segment (which can be 0 or 1 according to an ideal observer). In contrast
to the conditional probability of a word given a speech input in the case of lexical competition
(equation (1) in Computational Simulations section), segments that are predicted on the basis of
multiple words become more likely (equation (3) in Computational Simulations section). Hence
increased lexical uncertainty may not lead to increased segment prediction error if several lexical
items all predict the same upcoming segment. However, lexical items are ordinarily distinguished by
containing different subsequent phonemes. Hence, for speech sequences taken from natural
language, segment prediction error will almost inevitably become lower (i.e. predictions are more
accurate) as lexical uncertainty declines.

One key difference between segment prediction error and lexical entropy is that whereas
lexical entropy goes to zero after the DP of a nonword (since no lexical item matches the input),
segment prediction error will increase at or after the DP of a pseudoword since the phonemes heard
were not predicted. Furthermore, segment prediction error at the DP will decrease once a



pseudoword has been learned and consolidated, and to a degree that depends on the frequency of
the learned pseudoword and the number of candidate words that match the previous speech.

For example, before "#$%4&" is consolidated, the conditional probabilities of /I/ and /b/
when hearing the initial portion of "#3$%'( (i.e. p(l|fO:mjU) and p(b|fO:mjU) are respectively [1 0],
but after consolidation of !"#$%&"@hange to [.5 .5] (assuming equal frequency for !"#$%&"@nd0
I"#$%'() thereby reducing prediction error on hearing /b/ from 2 to 1 (given equation (4) in
Computational Simulations section). If an unrelated word is heard (e.g. the baseline item !"#%$%./,
containing the consonant /t/) then prediction error will be 2 prior to consolidation of I"#$%&", and 2
after consolidation.

Note that, to map from the local prediction error for each segment to the gross MEG GFP,
we used the sum of absolute values of prediction error over segments. Given that the sign of the
error can be positive or negative this cannot easily be related to the MEG signal (it will depend on
the direction of current and orientation of dendritic currents whether positive and negative signals
cancel out or summate). We also computed the sum of squared prediction errors instead: the results
were identical, except that smaller signal was predicted for consolidated (Day 1) Baseline items (1.5)
than the other Baseline conditions, the opposite of what was found. Given that the sum of absolute
values also failed to predict this increased response for Baseline items (see main text), we used this
measure for simplicity.

Opposite changes in segment prediction error and lexical entropy are also seen prior to DP.
Prediction error will decrease with consolidation if the novel word predicts the same segment as
contained in other lexical items. For instance, the likelihood of hearing /j/ given the initial segments
/fO:m/ is increased following consolidation since both !"#$%'( and !"#3$%&" predict the same
subsequent segment (i.e. /j/). Thus, whereas consolidation of I"#$%&" increases lexical uncertainty
between the UP and the DP of !"#$%/'(, prediction error is decreased since both lexical items predict
the same segment. In the example given above however, prediction error is zero for segments
between the UP and DP (since p(U|fO:mj) = 1, i.e. there is a unique potential upcoming phoneme)
and hence we only see a reduction in prediction error at the UP itself in the context of multiple
phonemic predictions (the segment (/j/), corresponding to the original UP of I"#$%'(, has an
increased conditional probability with respect to other phonemes). For this reason, we expect subtle
decreases in the neural response in the Day 1 condition before the DP and time-locked to the UP.

These opposite changes to lexical entropy and segment prediction error pre-DP and post-DP
are maximised by our experimental materials. We deliberately chose words with an early UP, and
added novel competitors that make the DP as late as possible. In this way, we gain the maximum
temporal separation of neural responses that are pre- and post-DP (see Figure S1 for the timing of
UP and DP segments in our set of items). However, we note that a more limited form of this
dissociation is possible in real words — despite the correlations between lexical entropy and segment
prediction error reported earlier. For instance, during the spoken word 67%--%'*3.(/sVkjul@nt/,
segment prediction error goes to zero following /sVkj/ since all the other matching competitors
(words like 67%--%&%predict the same segment /U/. However, there are a limited number of
these items in natural language, and only a brief period during these words in which segment
prediction error and lexical entropy dissociate. The unique strength of our experimental design is
that it creates a large number of items in which there is the maximum possible dissociation between
measures of lexical entropy and segment prediction error.

Lexical Ignition—an Alternative Account of the Link between Neural Activity and Spoken Word
Recognition

We have described two possible computational accounts in which neural activity is predicted to
decrease as more of a spoken word is processed, either due to a reduction in lexical competition
(quantified using entropy), or due to increased accuracy of sub-lexical predictions (quantified using
segment prediction error). However, another possibility is that neural responses measured using



MEG are associated with the activation of word-specific representations. One possible mechanism
for this is found in neural models of spoken word recognition proposed by Garagnani and colleagues
(Garagnani et al., 2008; Garagnani and Pulvermuller, 2011), which have been linked to MEG
responses for words and pseudowords in mismatch negativity studies (Garagnani et al., 2009). In this
account, words are represented in the form of Hebbian cell assemblies that are activated (‘ignite’)
when appropriate input is provided. This therefore leads to the prediction that neural activity will be
maximal when the speech signal matches one word —i.e. lexical ignition occurs when the conditional
probability of one word is high. At present, however, there are no simulations of this account that
make explicit predictions concerning the response to sequences of speech sounds that unfold over
time and hence no way in which we can use this model to derive neural predictions directly from
simulations.

There are, however, ways in which we can derive predictions from this account using an
assumed relationship between neural activity and the conditional probability of words given the
current speech input (similar to that used for lexical competition accounts). For instance, we could
assume that a threshold is applied to lexical activity such that lexical ignition and word recognition
occurs when a single candidate becomes sufficiently probable. However, it might be unclear what
probability threshold is required to avoid false identification. A second alternative is to combine
probabilities over multiple lexical candidates so that lexical ignition is proportional to the difference
in probability between the most probable word and other candidates (i.e., use a relative rather than
absolute threshold). This can be expressed in a form that is numerically opposite to lexical entropy,
so as to create a measure that is maximal when one word is highly probable. The simplest procedure
is to assume that neural activity reflects the probability of the most likely word at any point in time.
This is the assumption that we make in the simulations reported in Figure S1, (graphs formatted as in
Figure 1B-F). Here we report the conditional probability (as in equation 1 of the paper), for the most
probable word at every point in the sequence. The other two possible methods (thresholding, or
combining probabilities) lead to essentially the same predictions.

Note that while the profile depicted simulates the MEG results observed for the pre-DP
period, the post-DP response profile is opposite to the MEG results. Lexical ignition predicts
maximum activity for source words and consolidated novel words, and little or no activity for
unconsolidated novel words and baseline items.

Temporal Predictive Coding (a Neural lllustration of Segment Prediction Error)

This section provides an illustration of how the pattern of electrophysiological responses in the
superior temporal gyrus (STG) might be simulated within a predictive coding framework. We make
the following assumptions:

1. The STG contains a layer of sparse representations (e.g. in cortical columns) for each
phoneme in the language. These representations may be topographically-organised (based on
acoustic similarity and confusability), but for simplicity, we model the 56 phonemes in our stimulus
set by an arbitrary grid of 7x8 localist representations (units). This STG layer is assumed to be
connected to a “lower-level” acoustic layer (e.g. in primary auditory cortex), and a “higher-level”
lexical layer (e.g. in lateral temporal regions surrounding the STG).

2. Each unit contains three types of cell (likely in different cortical layers; Friston, 2005): (i)
cells that code the “state” or input from the acoustic layer, (ii) cells that code the prediction from the
higher, lexical layer, (iii) cells that code the “prediction error” (i.e. the difference between state and
prediction cells). Let the activity of each of these cells in the & STG unit during each speech
segment , be 9%,;<0s55;GndC%,;?

3. Assuming perfect acoustic processing, and that segment ,&orresponds to phonemeO@
then let®g, ABRrBA@Nd®;5,; ACotherwise.0
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4. The activity in the prediction units for segment , is based on the prior probability of each
phoneme, given the previous segments, based on input from the lexical system, as in Equation 3 in
Experimental Procedure, where this conditional probability is computed from the CELEX lexical
database, as explained in Section 2 above.

5. The activity of the &h prediction error cell for segment , is simply >5,;0 AGs9010=;,;?0
Assuming that the MEG signal is related to these error cells (if they correspond to the large
pyramidal cells that provide input to the layer above, Friston, 2005), and integrated over all such
cells in each layer (again assuming the sign is irrelevant), then the MEG signal for segment , is

56
z | >8(1) | .
&1

To confirm that these computations are similar to the segment prediction error simulation
reported in the main text, we ran this simulation for all of the 216 triplets (Source, Novel, Baseline
words) used in this study, in both situations when the trained novel word was (Day 1) or was not
(Day 2) included in the lexicon. As for the initial simulation, we assume that novel words learned on
Day 1 have a frequency equivalent to that of the source words, though in this case, we assigned the
frequency of all consolidated novel words to be 3 / million (this is the harmonic mean of the
frequency of the 216 source words in the experimental item set). We then averaged over all the
experimental item triples to produce the results in Figure S6 below. Note that in Figure 4, we used a
set of Gaussian kernels to visually represent the pattern of activity. However, the outcome will be
exactly the same providing the total activity within each type of cell is normalised to one at each
time-point to correspond to probabilities (the absolute value of prediction-error will differ, not the
relative pattern).

Supplemental Procedure
Participants

24 right-handed English native speakers (10 males) aged between 20 to 30 years (M = 23.7; S.D. =
2.3) were paid to take part in the study. They had no reported history of neurological, medical,
speech or hearing disorders. The project was approved by the Cambridge Psychology Research Ethics
Committee and all participants gave written consent. Three participants were excluded from
subsequent analyses due to falling asleep during recordings (1 participant) and failure to estimate
head position indicators and compensate for head movements (2 participants). Subjects were
instructed not to consume psychostimulants, drugs, or alcohol prior to and throughout the
experimental period. Quality of sleep (mean duration = 8.2 hr ; SD = 1.3) between the first initial
training on Day 1 and the final test on Day 2 was assessed using the St. Mary’s Hospital sleep
questionnaire (Ellis et al., 1981) and all participants reported having slept well or very well.

Stimuli

180 pairs of novel words (e.g. “I"#$%&'/!"#$%./”) were derived from 180 real words (e.g.
“I"#3$%'(D. The majority (75%) of the novel words were created by substituting final segments of
their source words (e.g. “I"#$%&"™ for “I'#$%'(”, cf. Gaskell and Dumay, 2003) and 25% had
additional segments added to the source words (e.g. “&,3E" (P’ for “&,3E", cf. Dumay and Gaskell,
2007). The 2 versions of each of the novel spoken words had the same structure but included
different changes to the final segments. From this set of 540 items (360 novel words, 180 real
words), three matched subsets of 60 triples (1 source word and 2 novel words), were created that
would be assigned to the different experimental conditions in a counterbalanced fashion (see Figure
2A). The 3 lists were matched on various criteria, including the proportion of pseudowords created
by substituting vs. adding segments, the CELEX frequency of the source words (Baayen et al., 1996),
number of segments (5 to 8; average = 6.3 segments), number of syllables (bi-/tri-syllabic; average =
2.5 syllables), their uniqueness point (UP) as computed from CELEX (average = 3.98 segments), their
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terminal set (i.e. number of words corresponding to the pre-uniqueness point segment; average =
22), their number of post-UP segments (average = 2.3 segments), and the number of segments
between UP and the divergence point (DP) between the source and novel words (average = 1.2
segments). In addition to these three lists of 60 triples, three further sets of 12 triples (i.e. 36 source
words, and 72 novel words, 108 items in total) were created in the same way and used as targets for
the pause-detection task (see Section B.4.3 below).

The 648 spoken words were recorded onto a high-quality digital recorder (Marantz, Japan)
by a male native speaker of British English in a soundproof booth at a sampling rate of 44.1 kHz with
care taken to ensure that the shared segments of the spoken words and pseudowords were
pronounced identically — in terms of their pitch accent, stress pattern, etc. However, naturally
occurring forms of anticipatory coarticulation will still be found in these recordings. Sound files were
digitally transferred to a computer, divided into single sound files using Adobe Audition software
(San Jose, CA), and trimmed to length. The mean duration of these sound files was 778 ms (ranging
from 507 ms to 1100 ms), producing an average speech rate of 3.25 syllables/second.

Two trained phoneticians listened to each of the recordings and marked in the speech signal
when deviating speech segments could be identified for each source, novel and baseline spoken
words (i.e. the Deviation Point, the onset of the final consonant /I/ for I"#$%'(, /b/ for "#$%&"and
/t/ for I"#%$9%./), and the segment that made each item unique from all other known words (i.e. the
Uniqueness Point, in this case the vowel /j/ which mismatches with "#3$(. , !"#$(' , etc). DP and
duration distributions of the novel spoken words, as well as the distribution of UP-to-DP time lag,
are reported in Figure S1. In marking the onset of the deviating and lexically unique segments were
informed that they should mark the earliest point at which the stimuli diverged phonetically and
hence should take into account reliable coarticulatory cues to distinguish between source and novel
words where these are present.

In linking estimates of lexical entropy and segment prediction error to the speech signal we
used the acoustic onset of critical segments in the speech signal as the time-point at which event-
related MEG signals will be aligned. This underestimates the timing of critical events — acoustic
information after this onset will be required for identification — however, this is a conservative
approach for assessing whether information before or after the uniqueness and deviation points is
reflected in neural responses. Since these phoneticians were naive to the purpose of the
experiment, and critical materials were counterbalanced over conditions, errors in the identification
of these acoustic landmarks could not contribute to the results observed.

Finally, a190 ms pause was inserted into the 108 items to be used the pause-detection task
approximately 1 or 2 phonemes before the DP.

Tasks and Procedures
Learning Task

The experiment was performed in two sessions on two consecutive days. On Day 1, participants
undertook 1080 trials of a phoneme-monitoring test with each of 60 novel words (one
pseudorandomly selected from each !"#$%&"GH#$%./@air) presented 18 times in a training session
lasting approximately 40 min. They were also trained for 216 additional trials (18 presentations /
item) for 12 novel words that would be used as targets for the pause detection task. On Day 2,
approximately 24 hours after the first session, participants performed the same phoneme
monitoring task with a new list of 72 novel words (60 test items plus 12 items to be used in pause
detection).

The training procedure used was similar to that described in Davis et al. (2009) - Prior to
each block of 72 trials (60 critical novel words + 12 subsequent pause-items), a visual display
signalled a target phoneme that participants should listen for (/p/, /t/, /k/, /\/, In/, /s/, /b/, /d/, /dZ/,
used twice each). Participants were required to indicate with a button-press when they detected the



target phoneme and had 1.9 sec to respond. Item order was randomised across blocks and each
block was repeated 18 times.

Subject Preparation to MEG

Approximately 60 min after the end of the second training session, participants were prepared for
MEG. This included 3D digitisation of their fiducials and headshape data, and also attachment of 70
EEG electrodes (because of relatively high levels of noise in the EEG data, they are not reported
here). A 3D digitizer (Fastrak Polhemus Inc., Colchester, VA) was used to record the locations of
Head-Position Indicator (HPI) coils and approximately 50-100 ‘head points’ along the scalp, relative
to three anatomical fiducials (the nasion and left and right pre-auricular points).

Pause-Detection Task (MEG Recording)

The MEG data were acquired while participants performed a pause-detection task (Mattys and Clark,
2002) on: 1) Novel words trained on Day 1 and their neighbouring Source and Baseline words (Day 1
condition), 2) Novel words trained on Day 2 and accompanying Source/Baseline words (Day 2
condition), and 3) a further set of Novel, Source and Baseline words (Untrained condition), resulting
in a 3 (Learning: Day 1, Day 2, Untrained) x 3 (ltem type: Source, Novel, Baseline words) factorial
design (see Figure 2A). The three lists of 60 word triples were counterbalanced across conditions and
participants, and the specific item assigned to the novel or baseline word conditions (e.g “I"#$%&"
or “I"#$%./”) was also counterbalanced. Items trained for use in the target detection condition were
assigned to the 9 conditions and counterbalanced in the same way. These 108 items (12 items in
each of 9 conditions) were presented with a pause during the MEG recording sessions and randomly
intermixed with the 540 items in the 9 conditions of interest.

MEG recordings were divided into 3 sessions each of about 11 min containing one item from
each of the 216 triples (i.e. only one of the source/novel/baseline items), with equal numbers
coming from the 9 experimental conditions. Stimuli were presented with a variable inter-stimulus
interval between 1850-2150 ms. The order in which items from each triplet were presented was
determined pseudo-randomly and matched across learning conditions, such that within-test learning
could not explain results obtained. The task of the participants was to press a button with their left
hand as quickly and accurately as possible when they detected a pause inserted in a spoken item.

The task of the participants was to press a button with their left hand as quickly and accurately as
possible when they detected a pause inserted in a spoken item. However, given the small numbers
of these items (12 responses/condition/participant), we also used a delayed repetition task (cf. Davis
et al., 2009) to examine effects of consolidation and training on the three sets of 60 novel spoken
words (Day 1/Day 2/Untrained).

Repetition Task

This test assessed whether the speed of speech production is enhanced for items trained on the
same- or previous-day. All 180 novel words (60 Day 1/Day 2/Untrained) were presented in random
order, followed, after a variable stimulus onset asynchrony ranging from 1550-2550ms, by a 380ms
tone that cued participants to say the word aloud as quickly as possible (see Figure 1B). Vocal
response latencies were recorded from the beginning of the cue tone using the E-Prime voice key.
However, due to technical problems, data from 2 participants were lost.

MEG Recording and Analyses

MEG data were collected with a VectorView system (Elekta-Neuromag, Helsinki, Finland), containing
a magnetometer and two orthogonal, planar gradiometers located at each of 102 positions within a
hemispherical array situated in a light Elekta-Neuromag magnetically-shielded room. The position of



the head relative to the sensor array was monitored continuously by feeding sinusoidal currents
(293-321 Hz) into four Head-Position Indicator (HPI) coils attached to the scalp. Vertical and
horizontal EOG were also recorded. All data were sampled at 1 kHz with a band-pass filter from
0.03—-330 Hz. External noise was removed from the MEG data using the temporal extension of
Signal-Space Separation as implemented with the MaxFilter software, Version 2.0 (Elekta-
Neuromag). The MEG data were compensated for movement every 200 ms. Manual inspection
identified some bad channels (0-3 channels across participants) which were recreated by MaxFilter.
The data were down-sampled to 250 Hz (i.e. 4 ms sampling), using an anti-aliasing lowpass filter
cutoff of 111 Hz. We only report data from the gradiometers in the main paper, because they
contain greater spatial information (for superficial sources), are less sensitive to deep brain sources
(which can be desirable for the largely superficial brain regions associated with speech perception)
and are more amenable to topographic analysis (though very similar results are found in the
magnetometer data, as reported in Supplemental Results, Section A.4).

Event-Related Fields (ERF)

Data were read into SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), low-pass filtered to 20 Hz in forward
and reverse directions using a 5th-order Butterworth digital filter, and then epoched from -900 to
500 ms locked to DP. The mean baseline computed from -900 ms to -500 ms (before word onset)
was removed from epoched data and robust averaging applied to minimise non-phase-locked
artefacts. For sensor-time analysis of planar gradiometer data, the Root-Mean Square (RMS) of the
two orthogonal gradients was computed to estimate the gradient magnitude at each sensor location
(this step was not performed for the source localisation). The exact same procedure was applied to
UP-locked data with epoch of -700 ms to 500 ms and baseline correction time-window -700 ms to -
400 ms. The time window of interest for pre-DP comparison was -300 to 100 ms for DP-locked
epochs and 100 ms to 200 ms for UP-locked epochs given the 100ms delay in cortical transmission of
sensory information (Davis and Zerlin, 1966; see also Figure S1). Furthermore, we only included in
the UP-locked analyses items with UP-to-DP delays greater than 100 ms (Figure S1) to exclude any
post-DP effect in this analysis (note, however, that the results were exactly similar when all items
were included). The time-window for the post-DP comparisons was 100 ms to 500 ms based on the
time range showing a significant )*+,-(',./0*!!*-, for Untrained items (see Figure S2).

Source Reconstruction

A structural MRI image for each participant was obtained on a 3T MR system (Siemens, Erlangen,
Germany) using a T1-weighted GRAPPA 3D MPRAGE sequence (TR=2250ms; TE=2.99ms; flip-angle=9
degrees; acceleration factor=2) with 1mm isotropic voxels. This image was spatially normalised to
grey matter, white matter and CSF segments of an MNI template brain in Talairach space. The
inverse of this spatial transformation was then used to warp a cortical mesh from that template
brain back to each subject’s MRI space (Mattout et al., 2007). The resulting ‘canonical’ mesh was a
continuous triangular tessellation of the grey/white matter interface of the neocortex (excluding
cerebellum) created from a canonical T1-weighted MPRAGE image in MNI space using FreeSurfer.
The surface was inflated to a sphere and down-sampled using octahedra to achieve a mesh of 8196
vertices (4098 per hemisphere) with a mean inter-vertex spacing of ~5 mm. The normal to the
surface at each vertex was calculated from an estimate of the local curvature of the surrounding
triangles. The same inverse-normalisation procedure was applied to template inner skull, outer skull
and scalp meshes of 2562 vertices.

The MEG sensor positions were projected onto each subject’s MRI space by a rigid-body
coregistration based on minimising the sum of squared differences between the digitised fiducials
and manually-defined fiducials on the subject’s MRI, and between the digitised head points and the
canonical scalp mesh (excluding head-points below the nasion, given absence of the nose on the T1-
weighted MRI). Lead-fields for each sensor were calculated for a dipole at each point in the



canonical cortical mesh, oriented normal to that mesh, and combined into a gain matrix, using the
Nolte method implemented in FieldTrip (http://fieldtrip.fcdonders.nl/), based on fit to the inner skull
mesh. Finally, these forward models were inverted using Multiple Sparse Priors (Friston et al., 2008),
which were optimised by pooling over participants (Henson et al., 2011). This inversion was
performed simultaneously for each condition of interest using a -500 ms to 500 ms time window of
interest (time-locked to DP) and a 0 to 20 Hz frequency band of interest. The total energy within the
post-DP time-window (i.e. 100 ms to 500 ms) and was then written to a 3D image in MNI space for
each condition of interest and each participant.

Statistical Analyses

Statistics were first performed on the Global Field Power (RMS across all sensors) of the
magnetometers and gradiometers, averaged over the pre-DP and the post-DP time-window of
interest. Because the (rectified) GFP data were not normally distributed, we used the Wilcoxon
Signed Ranks test to assess difference between conditions. Secondly, the averaged ERFs in each
participant and condition were entered into a 3D (2D scalp topography x time) analysis using the
cluster-based permutation test implemented in FieldTrip software (http://fieldtrip.fcdonders.nl/) to
control for multiple comparisons over sensors and time points (Maris and Oostenveld, 2007). This
analysis was performed separately for the magnetometers and RMS-gradiometers and implemented
as follows. We used F-statistics to assess critical hypotheses. Contiguous sensor-time samples in
which differences between conditions exceeded an uncorrected P-value < .05 were identified and
grouped into clusters. For each cluster the sum of sampled F-values was computed and the cluster
with the maximum sum was used as the cluster-level test statistic and compared to a randomized
null distribution assuming no difference between conditions (obtained by 3000 random
permutations of the conditions within subjects). The corrected p-value was estimated as the
proportion of the randomization null distribution that exceeded the observed maximum cluster-level
test statistic.

For source reconstruction analyses, 3-D images in source space for each of the 9 conditions
of interest in each participant were entered in a factorial ANOVA implemented in SPM 8
(http://www. fil.ion.ucl.ac.uk/spm/) with a pooled error and correction for nonsphericity. We used
the actual values derived from our neural segment prediction simulation to test for the predicted
response profile (Source Day 1 = 0.45; Novel Day 1 = 0.55; Baseline Day 1 = 2; Source Day 2 = 0;
Novel Day 2 = 2; Baseline Day 2 = 2; see Supplemental Information, section C and Figure S6). These
values were mean-centred so that this contrast summed to zero. These maps were thresholded at =0
HO001 uncorrected and a correction for multiple comparisons made using Random Field Theory
(Worsley et al., 1996). In an additional analysis, we restricted the search volume to areas identified
as being activated in the pseudoword > word contrast for Untrained items (i.e. )*+,-(',./0*!I*-, |1Gee
Figure S2). P values were corrected for multiple comparisons within this search volume using
Random Field Theory. This was confirmed by non-parametric statistical mapping of the same
contrast which showed similar peaks of activity in left [x =-52y=-22z=12and x=-42y=-32 2= 6]
and right [x =58 y = -16 z = 14] STG using a voxel height threshold whole-brain corrected.
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